Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 44(10): 4877-4887, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36286046

RESUMO

RNS60 is a physically modified saline solution hypothesized to contain oxygen nanobubbles. It has been reported to reduce ischemia/reperfusion injury in a pig model of acute myocardial infarction. We investigated the effects of RNS60 during cardiac hypoxia in mice and as an additive to cardioplegic solution in rat hearts. ApoE-/-LDLr-/- mice were treated by intravenous injection of RNS60 or saline as a control while monitoring the ECG and post-hypoxic serum release of troponin T and creatine kinase activity. Hearts infused with Custodiol containing 10% RNS60 or saline as the control were subjected to 4 h of 4 °C preservation, followed by an assessment of myocardial metabolites, purine release, and mechanical function. RNS60 attenuated changes in the ECG STU area during hypoxia, while the troponin T concentration and creatine kinase activity were significantly higher in the serum of the controls. During reperfusion after 4 h of cold ischemia, the Custodiol/RNS60-treated hearts had about 30% lower LVEDP and better dp/dtmax and dp/dtmin together with a decreased release of purine catabolites vs. the controls. The myocardial ATP, total adenine nucleotides, and phosphocreatine concentrations were higher in the RNS60-treated hearts. This study indicates that RNS60 enhances cardioprotection in experimental myocardial hypoxia and under conditions of cardioplegic arrest. Improved cardiac energetics are involved in the protective effect, but complete elucidation of the mechanism requires further study.

2.
J Neuroinflammation ; 15(1): 65, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29495962

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects the motor neuromuscular system leading to complete paralysis and premature death. The multifactorial nature of ALS that involves both cell-autonomous and non-cell-autonomous processes contributes to the lack of effective therapies, usually targeted to a single pathogenic mechanism. RNS60, an experimental drug containing oxygenated nanobubbles generated by modified Taylor-Couette-Poiseuille flow with elevated oxygen pressure, has shown anti-inflammatory and neuroprotective properties in different experimental paradigms. Since RNS60 interferes with multiple cellular mechanisms known to be involved in ALS pathology, we evaluated its effect in in vitro and in vivo models of ALS. METHODS: Co-cultures of primary microglia/spinal neurons exposed to LPS and astrocytes/spinal neurons from SOD1G93A mice were used to examine the effect of RNS60 or normal saline (NS) on the selective motor neuron degeneration. Transgenic SOD1G93A mice were treated with RNS60 or NS (300 µl/mouse intraperitoneally every other day) starting at the disease onset and examined for disease progression as well as pathological and biochemical alterations. RESULTS: RNS60 protected motor neurons in in vitro paradigms and slowed the disease progression of C57BL/6-SOD1G93A mice through a significant protection of spinal motor neurons and neuromuscular junctions. This was mediated by the (i) activation of an antioxidant response and generation of an anti-inflammatory environment in the spinal cord; (ii) activation of the PI3K-Akt pro-survival pathway in the spinal cord and sciatic nerves; (iii) reduced demyelination of the sciatic nerves; and (iv) elevation of peripheral CD4+/Foxp3+ T regulatory cell numbers. RNS60 did not show the same effects in 129Sv-SOD1G93A mice, which are unable to activate a protective immune response. CONCLUSION: RNS60 demonstrated significant therapeutic efficacy in C57BL/6-SOD1G93A mice by virtue of its effects on multiple disease mechanisms in motor neurons, glial cells, and peripheral immune cells. These findings, together with the excellent clinical safety profile, make RNS60 a promising candidate for ALS therapy and support further studies to unravel its molecular mechanism of action. In addition, the differences in efficacy of RNS60 in SOD1G93A mice of different strains may be relevant for identifying potential markers to predict efficacy in clinical trials.


Assuntos
Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/patologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Neuroglia/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Embrião de Mamíferos , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Transtornos Motores/tratamento farmacológico , Transtornos Motores/etiologia , Neurônios Motores/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/patologia , Crescimento Neuronal/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/etiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Cloreto de Sódio/uso terapêutico , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
3.
PLoS One ; 19(1): e0295504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166102

RESUMO

BACKGROUND: Stroke is a major cause of death, disability, and public health problems. Its intervention is limited to early treatment with thrombolytics and/or endovascular clot removal with mechanical thrombectomy without any available subacute or chronic neuroprotective treatments. RNS60 has reduced neuroinflammation and increased neuronal survival in several animal models of neurodegeneration and trauma. The aim here was to evaluate whether RNS60 protects the brain and cognitive function in a mouse stroke model. METHODS: Male C57BL/6J mice were subjected to sham or ischemic stroke surgery using 60-minute transient middle cerebral artery occlusion (tMCAo). In each group, mice received blinded daily administrations of RNS60 or control fluids (PNS60 or normal saline [NS]), beginning 2 hours after surgery over 13 days. Multiple neurobehavioral tests were conducted (Neurological Severity Score [mNSS], Novel Object Recognition [NOR], Active Place Avoidance [APA], and the Conflict Variant of APA [APAc]). On day 14, cortical microvascular perfusion (MVP) was measured, then brains were removed and infarct volume, immunofluorescence of amyloid beta (Aß), neuronal density, microglial activation, and white matter damage/myelination were measured. SPSS was used for analysis (e.g., ANOVA for parametric data; Kruskal Wallis for non-parametric data; with post-hoc analysis). RESULTS: Thirteen days of treatment with RNS60 reduced brain infarction, amyloid pathology, neuronal death, microglial activation, white matter damage, and increased MVP. RNS60 reduced brain pathology and resulted in behavioral improvements in stroke compared to sham surgery mice (increased memory-learning in NOR and APA, improved cognitive flexibility in APAc). CONCLUSION: RNS60-treated mice exhibit significant protection of brain tissue and improved neurobehavioral functioning after tMCAo-stroke. Additional work is required to determine mechanisms, time-window of dosing, and multiple dosing volumes durations to support clinical stroke research.


Assuntos
Isquemia Encefálica , Ataque Isquêmico Transitório , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Camundongos , Masculino , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Peptídeos beta-Amiloides , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/patologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Modelos Animais de Doenças
4.
J Vasc Surg ; 37(3): 644-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12618705

RESUMO

HYPOTHESIS: Arterial intimal hyperplasia is induced by injury and is frequently the cause of luminal narrowing after vascular reconstruction. Smooth muscle cells (SMC) respond to injury by proliferating and migrating into the intima. This process is regulated by thrombin, endothelin, and angiotensin II, all ligands of G protein-coupled receptors. Signal transduction from these receptors in cultured cells depends in part on transactivation of epidermal growth factor receptor (EGFR). We hypothesize that EGFR has a substantial role in activation of SMC in vivo and development of intimal hyperplasia. METHODS: Intimal hyperplasia was induced in rat carotid arteries by passage of a balloon catheter. Animals were given a monoclonal blocking antibody to rat EGFR, matched mouse immunoglobulin G (IgG) control antibody, or saline solution. RESULTS: Blocking EGFR antibody inhibited medial SMC proliferation, as determined by 5-bromo-2'-deoxyuridine labeling at 2 days (IgG control, 8.0% +/- 2.0%; anti-EGFR, 3.2% +/- 0.8%) and intimal hyperplasia at 14 days (intimal area: IgG control, 0.07 +/- 0.01 mm(2); anti-EGFR, 0.04 +/- 0.01 mm(2)). CONCLUSION: Activation of EGFR is important for early induction of SMC proliferation and subsequent intimal thickening.


Assuntos
Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/patologia , Receptores ErbB/fisiologia , Túnica Íntima/patologia , Animais , Anticorpos Monoclonais/administração & dosagem , Cateterismo , Divisão Celular , Receptores ErbB/imunologia , Hiperplasia , Imunoglobulina G/farmacologia , Masculino , Músculo Liso Vascular/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA