Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
PLoS Comput Biol ; 19(12): e1011708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38109436

RESUMO

The sinoatrial node (SAN), the primary pacemaker of the heart, is responsible for the initiation and robust regulation of sinus rhythm. 3D mapping studies of the ex-vivo human heart suggested that the robust regulation of sinus rhythm relies on specialized fibrotically-insulated pacemaker compartments (head, center and tail) with heterogeneous expressions of key ion channels and receptors. They also revealed up to five sinoatrial conduction pathways (SACPs), which electrically connect the SAN with neighboring right atrium (RA). To elucidate the role of these structural-molecular factors in the functional robustness of human SAN, we developed comprehensive biophysical computer models of the SAN based on 3D structural, functional and molecular mapping of ex-vivo human hearts. Our key finding is that the electrical insulation of the SAN except SACPs, the heterogeneous expression of If, INa currents and adenosine A1 receptors (A1R) across SAN pacemaker-conduction compartments are required to experimentally reproduce observed SAN activation patterns and important phenomena such as shifts of the leading pacemaker and preferential SACP. In particular, we found that the insulating border between the SAN and RA, is required for robust SAN function and protection from SAN arrest during adenosine challenge. The heterogeneity in the expression of A1R within the human SAN compartments underlies the direction of pacemaker shift and preferential SACPs in the presence of adenosine. Alterations of INa current and fibrotic remodelling in SACPs can significantly modulate SAN conduction and shift the preferential SACP/exit from SAN. Finally, we show that disease-induced fibrotic remodeling, INa suppression or increased adenosine make the human SAN vulnerable to pacing-induced exit blocks and reentrant arrhythmia. In summary, our computer model recapitulates the structural and functional features of the human SAN and can be a valuable tool for investigating mechanisms of SAN automaticity and conduction as well as SAN arrhythmia mechanisms under different pathophysiological conditions.


Assuntos
Sistema de Condução Cardíaco , Nó Sinoatrial , Humanos , Nó Sinoatrial/fisiologia , Arritmias Cardíacas , Adenosina , Simulação por Computador
2.
J Neurosci ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35882560

RESUMO

A rod-shaped appendage called a primary cilium projects from the soma of most central neurons in the mammalian brain. The importance of cilia within the nervous system is highlighted by the fact that human syndromes linked to primary cilia dysfunction, collectively termed ciliopathies, are associated with numerous neuropathologies, including hyperphagia-induced obesity, neuropsychiatric disorders, and learning and memory deficits. Neuronal cilia are enriched with signaling molecules, including specific G protein-coupled receptors (GPCRs) and their downstream effectors, suggesting they act as sensory organelles that respond to neuromodulators in the extracellular space. We previously showed that GPCR ciliary localization is disrupted in neurons from mouse models of the ciliopathy Bardet-Biedl syndrome (BBS). Based on this finding we hypothesized that mislocalization of ciliary GPCRs may impact receptor signaling and contribute to the BBS phenotypes. Here, we show that disrupting localization of the ciliary GPCR dopamine receptor 1 (D1) in male and female mice, either by loss of a BBS protein or loss of the cilium itself, specifically in D1-expressing neurons, results in obesity. Interestingly, the weight gain is associated with reduced locomotor activity, rather than increased food intake. Moreover, loss of a BBS protein or cilia on D1-expressing neurons leads to a reduction in D1-mediated signaling. Together, these results indicate that cilia impact D1 activity in the nervous system and underscore the importance of neuronal cilia for proper GPCR signaling.SIGNIFICANCE STATEMENT:Most mammalian neurons possess solitary appendages called primary cilia. These rod-shaped structures are enriched with signaling proteins, such as G protein-coupled receptors (GPCRs), suggesting they respond to neuromodulators. This study examines the consequences of disrupting ciliary localization of the GPCR dopamine receptor 1 (D1) in D1-expressing neurons. Remarkably, mice that have either abnormal accumulation of D1 in cilia or loss of D1 ciliary localization become obese. In both cases the obesity is associated with lower locomotor activity rather than overeating. As D1 activation increases locomotor activity, these results are consistent with a reduction in D1 signaling. Indeed, we found that D1-mediated signaling is reduced in brain slices from both mouse models. Thus, cilia impact D1 signaling in the brain.

3.
Circulation ; 144(2): 126-143, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33874740

RESUMO

BACKGROUND: Up to 50% of the adult human sinoatrial node (SAN) is composed of dense connective tissue. Cardiac diseases including heart failure (HF) may increase fibrosis within the SAN pacemaker complex, leading to impaired automaticity and conduction of electric activity to the atria. Unlike the role of cardiac fibroblasts in pathologic fibrotic remodeling and tissue repair, nothing is known about fibroblasts that maintain the inherently fibrotic SAN environment. METHODS: Intact SAN pacemaker complex was dissected from cardioplegically arrested explanted nonfailing hearts (non-HF; n=22; 48.7±3.1 years of age) and human failing hearts (n=16; 54.9±2.6 years of age). Connective tissue content was quantified from Masson trichrome-stained head-center and center-tail SAN sections. Expression of extracellular matrix proteins, including collagens 1 and 3A1, CILP1 (cartilage intermediate layer protein 1), and POSTN (periostin), and fibroblast and myofibroblast numbers were quantified by in situ and in vitro immunolabeling. Fibroblasts from the central intramural SAN pacemaker compartment (≈10×5×2 mm3) and right atria were isolated, cultured, passaged once, and treated ± transforming growth factor ß1 and subjected to comprehensive high-throughput next-generation sequencing of whole transcriptome, microRNA, and proteomic analyses. RESULTS: Intranodal fibrotic content was significantly higher in SAN pacemaker complex from HF versus non-HF hearts (57.7±2.6% versus 44.0±1.2%; P<0.0001). Proliferating phosphorylated histone 3+/vimentin+/CD31- (cluster of differentiation 31) fibroblasts were higher in HF SAN. Vimentin+/α-smooth muscle actin+/CD31- myofibroblasts along with increased interstitial POSTN expression were found only in HF SAN. RNA sequencing and proteomic analyses identified unique differences in mRNA, long noncoding RNA, microRNA, and proteomic profiles between non-HF and HF SAN and right atria fibroblasts and transforming growth factor ß1-induced myofibroblasts. Specifically, proteins and signaling pathways associated with extracellular matrix flexibility, stiffness, focal adhesion, and metabolism were altered in HF SAN fibroblasts compared with non-HF SAN. CONCLUSIONS: This study revealed increased SAN-specific fibrosis with presence of myofibroblasts, CILP1, and POSTN-positive interstitial fibrosis only in HF versus non-HF human hearts. Comprehensive proteotranscriptomic profiles of SAN fibroblasts identified upregulation of genes and proteins promoting stiffer SAN extracellular matrix in HF hearts. Fibroblast-specific profiles generated by our proteotranscriptomic analyses of the human SAN provide a comprehensive framework for future studies to investigate the role of SAN-specific fibrosis in cardiac rhythm regulation and arrhythmias.


Assuntos
Fibroblastos/metabolismo , Insuficiência Cardíaca/fisiopatologia , Nó Sinoatrial/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
J Mol Cell Cardiol ; 151: 56-71, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33130148

RESUMO

Atrial fibrillation (AF) occurrence and maintenance is associated with progressive remodeling of electrophysiological (repolarization and conduction) and 3D structural (fibrosis, fiber orientations, and wall thickness) features of the human atria. Significant diversity in AF etiology leads to heterogeneous arrhythmogenic electrophysiological and structural substrates within the 3D structure of the human atria. Since current clinical methods have yet to fully resolve the patient-specific arrhythmogenic substrates, mechanism-based AF treatments remain underdeveloped. Here, we review current knowledge from in-vivo, ex-vivo, and in-vitro human heart studies, and discuss how these studies may provide new insights on the synergy of atrial electrophysiological and 3D structural features in AF maintenance. In-vitro studies on surgically acquired human atrial samples provide a great opportunity to study a wide spectrum of AF pathology, including functional changes in single-cell action potentials, ion channels, and gene/protein expression. However, limited size of the samples prevents evaluation of heterogeneous AF substrates and reentrant mechanisms. In contrast, coronary-perfused ex-vivo human hearts can be studied with state-of-the-art functional and structural technologies, such as high-resolution near-infrared optical mapping and contrast-enhanced MRI. These imaging modalities can resolve atrial arrhythmogenic substrates and their role in reentrant mechanisms maintaining AF and validate clinical approaches. Nonetheless, longitudinal studies are not feasible in explanted human hearts. As no approach is perfect, we suggest that combining the strengths of direct human atrial studies with high fidelity approaches available in the laboratory and in realistic patient-specific computer models would elucidate deeper knowledge of AF mechanisms. We propose that a comprehensive translational pipeline from ex-vivo human heart studies to longitudinal clinically relevant AF animal studies and finally to clinical trials is necessary to identify patient-specific arrhythmogenic substrates and develop novel AF treatments.


Assuntos
Fibrilação Atrial/fisiopatologia , Fenômenos Eletrofisiológicos , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Imageamento Tridimensional , Miocárdio/patologia , Inteligência Artificial , Humanos
5.
Lupus ; 29(13): 1790-1799, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33045900

RESUMO

OBJECTIVE: Since enhanced cardiac magnetic resonance imaging (cMRI) signals have been associated with lupus disease activity in humans prior to renal failure and novel, cardiac-focused therapeutic strategies could be investigated with an associated animal model, autoimmune myocarditis was characterized in murine lupus nephritis (NZM2410). METHODS: Weekly blood urea nitrogen (BUN) levels and weights were recorded. Cardiac function was assessed by echocardiogram. Myocardial edema was measured with quantitative T2 cMRI mapping. Endpoint serum and cardiac tissue were collected for histopathological analysis and cytokine measurements. RESULTS: Despite showing no signs of significant renal disease, mice displayed evidence of myocarditis and fibrosis histologically at 30-35 weeks. Moreover, T2 cMRI mapping displayed robust signals and analysis of sagittal heart sections showed significant myocardium thickening. Cytokine expression levels of IL-2, IL-10, TNF-α, CXCL1, and IL-6 were significantly enhanced in serum. Echocardiograms demonstrated significantly increased ventricular diameters and reduced ejection fractions, while immunohistochemical staining identified CD4+ and CD8+ T cells, and IL-17 in cardiac infiltrates. Human lupus cardiac tissue showed similar histopathology with enhanced infiltrates by H&E, fibrosis, and CD4+ detection. CONCLUSIONS: Histopathology, functional abnormalities, and enhanced cMRI signals indicative of myocarditis are detected in NZM2410 mice without glomerulonephritis, which supports the primary pathological role of autoimmune-mediated, cardiac-targeted inflammation in lupus.


Assuntos
Glomerulonefrite/patologia , Nefrite Lúpica/patologia , Miocardite/patologia , Miocárdio/patologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Ecocardiografia , Feminino , Fibrose , Interleucina-17/metabolismo , Nefrite Lúpica/imunologia , Nefrite Lúpica/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/imunologia , Miocardite/metabolismo
6.
Circulation ; 134(6): 486-98, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27462069

RESUMO

BACKGROUND: Adenosine provokes atrial fibrillation (AF) with a higher activation frequency in right atria (RA) versus left atria (LA) in patients, but the underlying molecular and functional substrates are unclear. We tested the hypothesis that adenosine-induced AF is driven by localized reentry in RA areas with highest expression of adenosine A1 receptor and its downstream GIRK (G protein-coupled inwardly rectifying potassium channels) channels (IK,Ado). METHODS: We applied biatrial optical mapping and immunoblot mapping of various atrial regions to reveal the mechanism of adenosine-induced AF in explanted failing and nonfailing human hearts (n=37). RESULTS: Optical mapping of coronary-perfused atria (n=24) revealed that adenosine perfusion (10-100 µmol/L) produced more significant shortening of action potential durations in RA (from 290±45 to 239±41 ms, 17.3±10.4%; P<0.01) than LA (from 307±24 to 286±23 ms, 6.7±6.6%; P<0.01). In 10 hearts, adenosine induced AF (317±116 s) that, when sustained (≥2 minutes), was primarily maintained by 1 to 2 localized reentrant drivers in lateral RA. Tertiapin (10-100 nmol/L), a selective GIRK channel blocker, counteracted adenosine-induced action potential duration shortening and prevented AF induction. Immunoblotting showed that the superior/middle lateral RA had significantly higher adenosine A1 receptor (2.7±1.7-fold; P<0.01) and GIRK4 (1.7±0.8-fold; P<0.05) protein expression than lateral/posterior LA. CONCLUSIONS: This study revealed a 3-fold RA-to-LA adenosine A1 receptor protein expression gradient in the human heart, leading to significantly greater RA versus LA repolarization sensitivity in response to adenosine. Sustained adenosine-induced AF is maintained by reentrant drivers localized in lateral RA regions with the highest adenosine A1 receptor/GIRK4 expression. Selective atrial GIRK channel blockade may effectively treat AF during conditions with increased endogenous adenosine.


Assuntos
Adenosina/toxicidade , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/biossíntese , Átrios do Coração/metabolismo , Receptor A1 de Adenosina/biossíntese , Adulto , Idoso , Feminino , Regulação da Expressão Gênica , Coração/diagnóstico por imagem , Coração/efeitos dos fármacos , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/efeitos dos fármacos , Sistema de Condução Cardíaco/diagnóstico por imagem , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
7.
Biochim Biophys Acta ; 1852(5): 873-81, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25615793

RESUMO

Despite intensive research, the pathways that mediate calcium (Ca(2+))-stimulated glucose transport in striated muscle remain elusive. Since the sarcoplasmic reticulum calcium ATPase (SERCA) pump tightly regulates cytosolic [Ca(2+)], we investigated whether the SERCA pump is a major regulator of cardiac glucose transport. We used healthy and insulin-deficient diabetic transgenic (TG) mice expressing SERCA1a in the heart. Active cell surface glucose transporter (GLUT)-4 was measured by a biotinylated photolabeled assay in the intact perfused myocardium and isolated myocytes. In healthy TG mice, cardiac-specific SERCA1a expression increased active cell-surface GLUT4 and glucose uptake in the myocardium, as well as whole body glucose tolerance. Diabetes reduced active cell-surface GLUT4 content and glucose uptake in the heart of wild type mice, all of which were preserved in diabetic TG mice. Decreased basal AS160 and increased proportion of calmodulin-bound AS160 paralleled the increase in cell surface GLUT4 content in the heart of TG mice, suggesting that AS160 regulates GLUT trafficking by a Ca(2+)/calmodulin dependent pathway. In addition, cardiac-specific SERCA1a expression partially rescues hyperglycemia during diabetes. Collectively, these data suggested that the SERCA pump is a major regulator of cardiac glucose transport by an AS160 dependent mechanism during healthy and insulin-deficient state. Our data further indicated that cardiac-specific SERCA overexpression rescues diabetes induced-alterations in cardiac glucose transport and improves whole body glucose homeostasis. Therefore, findings from this study provide novel mechanistic insights linking upregulation of the SERCA pump in the heart as a potential therapeutic target to improve glucose metabolism during diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Transporte Biológico , Western Blotting , Cálcio/metabolismo , Calmodulina/metabolismo , Diabetes Mellitus Experimental/genética , Ecocardiografia , Fluordesoxiglucose F18 , Proteínas Ativadoras de GTPase/metabolismo , Homeostase , Camundongos Transgênicos , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Função Ventricular Esquerda
8.
Eur Heart J ; 36(11): 686-97, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24216388

RESUMO

AIMS: Loss-of-function mutations in Calsequestrin 2 (CASQ2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT patients also exhibit bradycardia and atrial arrhythmias for which the underlying mechanism remains unknown. We aimed to study the sinoatrial node (SAN) dysfunction due to loss of CASQ2. METHODS AND RESULTS: In vivo electrocardiogram (ECG) monitoring, in vitro high-resolution optical mapping, confocal imaging of intracellular Ca(2+) cycling, and 3D atrial immunohistology were performed in wild-type (WT) and Casq2 null (Casq2(-/-)) mice. Casq2(-/-) mice exhibited bradycardia, SAN conduction abnormalities, and beat-to-beat heart rate variability due to enhanced atrial ectopic activity both at baseline and with autonomic stimulation. Loss of CASQ2 increased fibrosis within the pacemaker complex, depressed primary SAN activity, and conduction, but enhanced atrial ectopic activity and atrial fibrillation (AF) associated with macro- and micro-reentry during autonomic stimulation. In SAN myocytes, CASQ2 deficiency induced perturbations in intracellular Ca(2+) cycling, including abnormal Ca(2+) release, periods of significantly elevated diastolic Ca(2+) levels leading to pauses and unstable pacemaker rate. Importantly, Ca(2+) cycling dysfunction occurred not only at the SAN cellular level but was also globally manifested as an increased delay between action potential (AP) and Ca(2+) transient upstrokes throughout the atrial pacemaker complex. CONCLUSIONS: Loss of CASQ2 causes abnormal sarcoplasmic reticulum Ca(2+) release and selective interstitial fibrosis in the atrial pacemaker complex, which disrupt SAN pacemaking but enhance latent pacemaker activity, create conduction abnormalities and increase susceptibility to AF. These functional and extensive structural alterations could contribute to SAN dysfunction as well as AF in CPVT patients.


Assuntos
Fibrilação Atrial/genética , Bradicardia/genética , Calsequestrina/genética , Deleção de Genes , Retículo Sarcoplasmático/metabolismo , Nó Sinoatrial/fisiologia , Potenciais de Ação/fisiologia , Animais , Função Atrial/genética , Cálcio/metabolismo , Calsequestrina/deficiência , Cardiomegalia/genética , Fibrose/genética , Técnicas de Inativação de Genes , Camundongos Transgênicos , Nó Sinoatrial/patologia
9.
Eur Heart J ; 36(35): 2390-401, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26059724

RESUMO

AIMS: The complex architecture of the human atria may create physical substrates for sustained re-entry to drive atrial fibrillation (AF). The existence of sustained, anatomically defined AF drivers in humans has been challenged partly due to the lack of simultaneous endocardial-epicardial (Endo-Epi) mapping coupled with high-resolution 3D structural imaging. METHODS AND RESULTS: Coronary-perfused human right atria from explanted diseased hearts (n = 8, 43-72 years old) were optically mapped simultaneously by three high-resolution CMOS cameras (two aligned Endo-Epi views (330 µm2 resolution) and one panoramic view). 3D gadolinium-enhanced magnetic resonance imaging (GE-MRI, 80 µm3 resolution) revealed the atrial wall structure varied in thickness (1.0 ± 0.7-6.8 ± 2.4 mm), transmural fiber angle differences, and interstitial fibrosis causing transmural activation delay from 23 ± 11 to 43 ± 22 ms at increased pacing rates. Sustained AF (>90 min) was induced by burst pacing during pinacidil (30-100 µM) perfusion. Dual-sided sub-Endo-sub-Epi optical mapping revealed that AF was driven by spatially and temporally stable intramural re-entry with 107 ± 50 ms cycle length and transmural activation delay of 67 ± 31 ms. Intramural re-entrant drivers were captured primarily by sub-Endo mapping, while sub-Epi mapping visualized re-entry or 'breakthrough' patterns. Re-entrant drivers were anchored on 3D micro-anatomic tracks (15.4 ± 2.2 × 6.0 ± 2.3 mm2, 2.9 ± 0.9 mm depth) formed by atrial musculature characterized by increased transmural fiber angle differences and interstitial fibrosis. Targeted radiofrequency ablation of the tracks verified these re-entries as drivers of AF. CONCLUSIONS: Integrated 3D structural-functional mapping of diseased human right atria ex vivo revealed that the complex atrial microstructure caused significant differences between Endo vs. Epi activation during pacing and sustained AF driven by intramural re-entry anchored to fibrosis-insulated atrial bundles.


Assuntos
Fibrilação Atrial/patologia , Átrios do Coração/patologia , Adulto , Idoso , Fibrilação Atrial/etiologia , Fibrilação Atrial/fisiopatologia , Técnicas de Imagem Cardíaca , Meios de Contraste , Mapeamento Epicárdico/métodos , Gadolínio , Átrios do Coração/fisiopatologia , Humanos , Angiografia por Ressonância Magnética/métodos , Pessoa de Meia-Idade
10.
J Physiol ; 593(6): 1443-58, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25384790

RESUMO

KEY POINTS: Atrial fibrillation is often initiated and perpetuated by abnormal electrical pulses repetitively originating from regions outside the heart's natural pacemaker. In this study we examined the causal role of abnormal calcium releases from the sarcoplasmic reticulum in producing repetitive electrical discharges in atrial cells and tissues. Calsequestrin2 is a protein that stabilizes the closed state of calcium release channels, i.e. the ryanodine receptors. In the atria from mice predisposed to abnormal calcium releases secondary to the absence of calsequestrin2, we observed abnormal repetitive electrical discharges that may lead to atrial fibrillation. Here, we report a novel pathological rhythm generator. Specifically, abnormal calcium release leads to electrical activation, which in turn results in another abnormal calcium release. This process repeats itself and thus sustains the repetitive electrical discharges. These results suggest that improving the stability of ryanodine receptors might be useful to treat atrial fibrillation. ABSTRACT: Aberrant diastolic calcium (Ca) release due to leaky ryanodine receptors (RyR2s) has been recently associated with atrial fibrillation (AF) and catecholaminergic polymorphic ventricular tachycardia (CPVT). However, it remains unclear how diastolic Ca release contributes to the rising of rapid repetitive focal activity, which is considered as a common AF triggering mechanism. To address this question, we conducted simultaneous voltage/Ca optical mapping in atrial tissue and one-/two-dimensional confocal imaging in atrial tissue and myocytes from wild-type (WT, n = 15) and CPVT mice lacking calsequestrin 2 (Casq2(-/-), n = 45), which promotes diastolic Ca release. During ß-adrenergic stimulation (100 nM isoproterenol), only Casq2(-/-) atrial myocytes showed pacing-induced self-sustained repetitive activity (31 ± 21 s vs. none in WT). Importantly, in atrial tissue, this repetitive activity could translate to Ca-dependent focal arrhythmia. Ectopic action potential (AP) firing during repetitive activity occurred only when diastolic Ca release achieved a sufficient level of synchronization. The AP, in turn, synchronized subsequent diastolic Ca release by temporally aligning multiple sources of Ca waves both within individual myocytes and throughout the atrial tissue. This alternating interplay between AP and diastolic Ca release perpetuates the self-sustaining repetitive activity. In fact, pharmacological disruption of synchronized diastolic Ca release (by ryanodine) prevented aberrant APs; and vice versa, the inhibition of AP (by TTX or 0 Na, 0 Ca solution) de-synchronized diastolic Ca release. Taken together, these results suggest that a cyclical interaction between synchronized diastolic Ca release and AP forms a pathological rhythm generator that is involved in Ca-dependent atrial arrhythmias in CPVT.


Assuntos
Fibrilação Atrial/metabolismo , Sinalização do Cálcio , Calsequestrina/genética , Potenciais da Membrana , Miócitos Cardíacos/fisiologia , Potenciais de Ação , Animais , Fibrilação Atrial/genética , Células Cultivadas , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Periodicidade
11.
Circulation ; 130(4): 315-24, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24838362

RESUMO

BACKGROUND: Although sinoatrial node (SAN) dysfunction is a hallmark of human heart failure (HF), the underlying mechanisms remain poorly understood. We aimed to examine the role of adenosine in SAN dysfunction and tachy-brady arrhythmias in chronic HF. METHODS AND RESULTS: We applied multiple approaches to characterize SAN structure, SAN function, and adenosine A1 receptor expression in control (n=17) and 4-month tachypacing-induced chronic HF (n=18) dogs. Novel intramural optical mapping of coronary-perfused right atrial preparations revealed that adenosine (10 µmol/L) markedly prolonged postpacing SAN conduction time in HF by 206 ± 99 milliseconds (versus 66 ± 21 milliseconds in controls; P=0.02). Adenosine induced SAN intranodal conduction block or microreentry in 6 of 8 dogs with HF versus 0 of 7 controls (P=0.007). Adenosine-induced SAN conduction abnormalities and automaticity depression caused postpacing atrial pauses in HF versus control dogs (17.1 ± 28.9 versus 1.5 ± 1.3 seconds; P<0.001). Furthermore, 10 µmol/L adenosine shortened atrial repolarization and led to pacing-induced atrial fibrillation in 6 of 7 HF versus 0 of 7 control dogs (P=0.002). Adenosine-induced SAN dysfunction and atrial fibrillation were abolished or prevented by adenosine A1 receptor antagonists (50 µmol/L theophylline/1 µmol/L 8-cyclopentyl-1,3-dipropylxanthine). Adenosine A1 receptor protein expression was significantly upregulated during HF in the SAN (by 47 ± 19%) and surrounding atrial myocardium (by 90 ± 40%). Interstitial fibrosis was significantly increased within the SAN in HF versus control dogs (38 ± 4% versus 23 ± 4%; P<0.001). CONCLUSIONS: In chronic HF, adenosine A1 receptor upregulation in SAN pacemaker and atrial cardiomyocytes may increase cardiac sensitivity to adenosine. This effect may exacerbate conduction abnormalities in the structurally impaired SAN, leading to SAN dysfunction, and potentiate atrial repolarization shortening, thereby facilitating atrial fibrillation. Atrial fibrillation may further depress SAN function and lead to tachy-brady arrhythmias in HF.


Assuntos
Bradicardia/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Receptor A1 de Adenosina/biossíntese , Nó Sinoatrial/fisiopatologia , Taquicardia/fisiopatologia , Imagens com Corantes Sensíveis à Voltagem/métodos , Potenciais de Ação/efeitos dos fármacos , Adenosina/administração & dosagem , Adenosina/farmacologia , Adenosina/toxicidade , Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/uso terapêutico , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/fisiopatologia , Bradicardia/etiologia , Estimulação Cardíaca Artificial/efeitos adversos , Cães , Relação Dose-Resposta a Droga , Fibrose , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Insuficiência Cardíaca/genética , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/fisiologia , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/patologia , Taquicardia/etiologia , Teofilina/farmacologia , Teofilina/uso terapêutico , Regulação para Cima , Xantinas/farmacologia , Xantinas/uso terapêutico
12.
Biochim Biophys Acta ; 1832(1): 121-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23041416

RESUMO

Glucose uptake from the bloodstream is the rate-limiting step in whole body glucose utilization, and is regulated by a family of membrane proteins called glucose transporters (GLUTs). Although GLUT4 is the predominant isoform in insulin-sensitive tissues, there is recent evidence that GLUT12 could be a novel second insulin-sensitive GLUT. However, its physiological role in the heart is not elucidated and the regulation of insulin-stimulated myocardial GLUT12 translocation is unknown. In addition, the role of GLUT12 has not been investigated in the diabetic myocardium. Thus, we hypothesized that, as for GLUT4, insulin regulates GLUT12 translocation to the myocardial cell surface, which is impaired during diabetes. Active cell surface GLUT (-4 and -12) content was quantified (before and after insulin stimulation) by a biotinylated photolabeled assay in both intact perfused myocardium and isolated cardiac myocytes of healthy and type 1 diabetic rodents. GLUT localization was confirmed by immunofluorescent confocal microscopy, and total GLUT protein expression was measured by Western blotting. Insulin stimulation increased translocation of GLUT-4, but not -12, in the healthy myocardium. Total GLUT4 content of the heart was decreased during diabetes, while there was no difference in total GLUT12. Active cell surface GLUT12 content was increased in the diabetic myocardium, potentially as a compensatory mechanism for the observed downregulation of GLUT4. Collectively, our data suggest that, in contrast to GLUT4, insulin does not mediate GLUT12 translocation, which may function as a basal GLUT located primarily at the cell surface in the myocardium.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Miocárdio/metabolismo , Animais , Transporte Biológico , Diabetes Mellitus Tipo 1/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Camundongos
13.
Heart Rhythm ; 20(1): 122-133, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113768

RESUMO

The sinoatrial node (SAN) is the primary pacemaker of the human heart. It is a single, elongated, 3-dimensional (3D) intramural fibrotic structure located at the junction of the superior vena cava intercaval region bordering the crista terminalis (CT). SAN activation originates in the intranodal pacemakers and is conducted to the atria through 1 or more discrete sinoatrial conduction pathways. The complexity of the 3D SAN pacemaker structure and intramural conduction are underappreciated during clinical multielectrode mapping and ablation procedures of SAN and atrial arrhythmias. In fact, defining and targeting SAN is extremely challenging because, even during sinus rhythm, surface-only multielectrode mapping may not define the leading pacemaker sites in intramural SAN but instead misinterpret them as epicardial or endocardial exit sites through sinoatrial conduction pathways. These SAN exit sites may be distributed up to 50 mm along the CT beyond the ∼20-mm-long anatomic SAN structure. Moreover, because SAN reentrant tachycardia beats may exit through the same sinoatrial conduction pathway as during sinus rhythm, many SAN arrhythmias are underdiagnosed. Misinterpretation of arrhythmia sources and/or mechanisms (eg, enhanced automaticity, intranodal vs CT reentry) limits diagnosis and success of catheter ablation treatments for poorly understood SAN arrhythmias. The aim of this review is to provide a state-of-the-art overview of the 3D structure and function of the human SAN complex, mechanisms of SAN arrhythmias and available approaches for electrophysiological mapping, 3D structural imaging, pharmacologic interventions, and ablation to improve diagnosis and mechanistic treatment of SAN and atrial arrhythmias.


Assuntos
Fibrilação Atrial , Nó Sinoatrial , Humanos , Sistema de Condução Cardíaco/fisiologia , Veia Cava Superior , Átrios do Coração
14.
J Appl Physiol (1985) ; 134(5): 1287-1299, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995910

RESUMO

Cardiac stromal interaction molecule 1 (STIM1), a key mediator of store-operated Ca2+ entry (SOCE), is a known determinant of cardiomyocyte pathological growth in hypertrophic cardiomyopathy. We examined the role of STIM1 and SOCE in response to exercise-dependent physiological hypertrophy. Wild-type (WT) mice subjected to exercise training (WT-Ex) showed a significant increase in exercise capacity and heart weight compared with sedentary (WT-Sed) mice. Moreover, myocytes from WT-Ex hearts displayed an increase in length, but not width, compared with WT-Sed myocytes. Conversely, exercised cardiac-specific STIM1 knock-out mice (cSTIM1KO-Ex), although displaying significant increase in heart weight and cardiac dilation, evidenced no changes in myocyte size and displayed a decreased exercise capacity, impaired cardiac function, and premature death compared with sedentary cardiac-specific STIM1 knock-out mice (cSTIM1KO-Sed). Confocal Ca2+ imaging demonstrated enhanced SOCE in WT-Ex myocytes compared with WT-Sed myocytes with no measurable SOCE detected in cSTIM1KO myocytes. Exercise training induced a significant increase in cardiac phospho-Akt Ser473 in WT mice but not in cSTIM1KO mice. No differences were observed in phosphorylation of mammalian target of rapamycin (mTOR) and glycogen synthase kinase (GSK) in exercised versus sedentary cSTIM1KO mice hearts. cSTIM1KO-Sed mice showed increased basal MAPK phosphorylation compared with WT-Sed that was not altered by exercise training. Finally, histological analysis revealed exercise resulted in increased autophagy in cSTIM1KO but not in WT myocytes. Taken together, our results suggest that adaptive cardiac hypertrophy in response to exercise training involves STIM1-mediated SOCE. Our results demonstrate that STIM1 is involved in and essential for the myocyte longitudinal growth and mTOR activation in response to endurance exercise training.NEW & NOTEWORTHY Store-operated Ca2+ entry (SOCE) has been implicated in pathological cardiac hypertrophy; however, its role in physiological hypertrophy is unknown. Here we report that SOCE is also essential for physiological cardiac hypertrophy and functional adaptations in response to endurance exercise. These adaptations were associated with activation of AKT/mTOR pathway and curtailed cardiac autophagy and degeneration. Thus, SOCE is a common mechanism and an important bifurcation point for signaling paths involved in physiological and pathological hypertrophy.


Assuntos
Canais de Cálcio , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Canais de Cálcio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Cardiomegalia/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Camundongos Knockout , Cálcio/metabolismo , Sinalização do Cálcio , Mamíferos/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 302(1): H253-61, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21984545

RESUMO

The role of calsequestrin (CASQ2) in cardiac sarcoplasmic reticulum (SR) calcium (Ca(2+)) transport has gained significant attention since point mutations in CASQ2 were reported to cause ventricular arrhythmia. In the present study, we have critically evaluated the functional consequences of expressing the CASQ2(D307H) mutant protein in the CASQ2 null mouse. We recently reported that the mutant CASQ2(D307H) protein can be stably expressed in CASQ2 null hearts, and it targets appropriately to the junctional SR (Kalyanasundaram A, Bal NC, Franzini-Armstrong C, Knollmann BC, Periasamy M. J Biol Chem 285: 3076-3083, 2010). In this study, we found that introduction of CASQ2(D307H) protein in the CASQ2 null background partially restored triadin 1 levels, which were decreased in the CASQ2 null mice. Despite twofold expression (relative to wild-type CASQ2), the mutant protein failed to increase SR Ca(2+) load. We also found that the Ca(2+) transient decays slower in the CASQ2 null and CASQ2(D307H) cells. CASQ2(D307H) myocytes, when rhythmically paced and challenged with isoproterenol, exhibit spontaneous Ca(2+) waves similar to CASQ2 null myocytes; however, the stability of Ca(2+) cycling was increased in the CASQ2(D307H) myocytes. In the presence of isoproterenol, Ca(2+)-transient amplitude in CASQ2(D307H) myocytes was significantly decreased, possibly indicating an inherent defect in Ca(2+) buffering capacity and release from the mutant CASQ2 at high Ca(2+) concentrations. We also observed polymorphic ventricular tachycardia in the CASQ2(D307H) mice, although lesser than in the CASQ2 null mice. These data suggest that CASQ2(D307H) point mutation may affect Ca(2+) buffering capacity and Ca(2+) release. We propose that poor interaction between CASQ2(D307H) and triadin 1 could affect ryanodine receptor 2 stability, thereby increasing susceptibility to delayed afterdepolarizations and triggered arrhythmic activity.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Calsequestrina/metabolismo , Miócitos Cardíacos/metabolismo , Mutação Puntual , Retículo Sarcoplasmático/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Calsequestrina/genética , Estimulação Cardíaca Artificial , Cardiotônicos/farmacologia , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Eletrocardiografia , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular , Isoproterenol/farmacologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Musculares/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Fatores de Tempo
16.
J Biol Chem ; 285(5): 3076-83, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19920148

RESUMO

Mutations in cardiac ryanodine receptor (RYR2) and cardiac calsequestrin (CASQ2) genes are linked to catecholaminergic polymorphic ventricular tachycardia, a life-threatening genetic disease. They predispose young individuals to cardiac arrhythmia in the absence of structural abnormalities. One such mutation that changes an aspartic residue to histidine at position 307 in CASQ2 has been linked to catecholaminergic polymorphic ventricular tachycardia. In this study we made a transgenic mouse model expressing the mutant CASQ2(D307H) protein in a CASQ2 null background and investigated if the disease is caused by accelerated degradation of the mutant protein. Our data suggest that the mutant protein can be expressed, is relatively stable, and targets appropriately to the junctional sarcoplasmic reticulum. Moreover, it partially normalizes the ultrastructure of the sarcoplasmic reticulum, which was altered in the CASQ2 null background. In addition, overexpression of the mutant protein does not cause any pathology and/or structural changes in the myocardium. We further demonstrate, using purified protein, that the mutant protein is very stable under chemical and thermal denaturation but shows abnormal Ca(2+) buffering characteristics at high calcium concentrations. In addition, trypsin digestion studies reveal that the mutant protein is more susceptible to protease activity only in the presence of high Ca(2+). These studies collectively suggest that the D307H mutation can compromise the dynamic behavior of CASQ2 including supramolecular rearrangement upon Ca(2+) activation.


Assuntos
Cálcio/química , Calsequestrina/genética , Mutação , Retículo Sarcoplasmático/metabolismo , Animais , Soluções Tampão , Calsequestrina/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal/métodos , Miocárdio/patologia , Regiões Promotoras Genéticas , Dobramento de Proteína , Proteínas/metabolismo , Taquicardia Ventricular/metabolismo
17.
Am J Physiol Heart Circ Physiol ; 300(2): H702-11, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21131480

RESUMO

There is emerging evidence that treatment with thyroid hormone (TH) can improve postischemic cardiac function. 3,5-Diiodothyropropionic acid (DITPA), a TH analog, has been proposed to be a safer therapeutic agent than TH because of its negligible effects on cardiac metabolism and heart rate. However, conflicting results have been reported for the cardiac effects of DITPA. Importantly, recent clinical trials demonstrated no symptomatic benefit in patients with DITPA despite some improved hemodynamic and metabolic parameters. To address these issues, dose-dependent effects of DITPA were investigated in mice for baseline cardiovascular effects and postischemic myocardial function and/or salvage. Mice were treated with subcutaneous DITPA at 0.937, 1.875, 3.75, or 7.5 mg·kg(-1)·day(-1) for 7 days, and the results were compared with untreated mice for ex vivo and/or in vivo myocardial ischemia-reperfusion (I/R). DITPA had no effects on baseline body temperature, body weight, or heart rate; however, it mildly increased blood pressure. In isolated hearts, baseline contractile function was significantly impaired in DITPA-pretreated mice; however, postischemic recovery was comparable between untreated and DITPA-treated groups. In vivo baseline cardiac parameters were significantly affected by DITPA, with increased ventricular dimensions and decreased contractile function. Importantly, DITPA-treated mice demonstrated high prevalence of fatal cardiac rhythm abnormalities during in vivo ischemia and/or reperfusion. There were no improvements in myocardial infarction and postischemic fractional shortening with DITPA. Myocardial sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), phospholamban (PLB), and heat shock protein (HSP) levels remained unchanged with DITPA treatment. Thus DITPA administration impairs baseline cardiac parameters in mice and can be fatal during in vivo acute myocardial I/R.


Assuntos
Di-Iodotironinas/toxicidade , Coração/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/mortalidade , Propionatos/toxicidade , Animais , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Cardiotônicos/farmacologia , Interpretação Estatística de Dados , Relação Dose-Resposta a Droga , Ecocardiografia , Eletrocardiografia/efeitos dos fármacos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Simpatomiméticos/farmacologia , Tiroxina/farmacologia , Tri-Iodotironina/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos
18.
Sci Rep ; 11(1): 19328, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588502

RESUMO

Heart failure (HF) is frequently accompanied with the sinoatrial node (SAN) dysfunction, which causes tachy-brady arrhythmias and increased mortality. MicroRNA (miR) alterations are associated with HF progression. However, the transcriptome of HF human SAN, and its role in HF-associated remodeling of ion channels, transporters, and receptors responsible for SAN automaticity and conduction impairments is unknown. We conducted comprehensive high-throughput transcriptomic analysis of pure human SAN primary pacemaker tissue and neighboring right atrial tissue from human transplanted HF hearts (n = 10) and non-failing (nHF) donor hearts (n = 9), using next-generation sequencing. Overall, 47 miRs and 832 mRNAs related to multiple signaling pathways, including cardiac diseases, tachy-brady arrhythmias and fibrosis, were significantly altered in HF SAN. Of the altered miRs, 27 are predicted to regulate mRNAs of major ion channels and neurotransmitter receptors which are involved in SAN automaticity (e.g. HCN1, HCN4, SLC8A1) and intranodal conduction (e.g. SCN5A, SCN8A) or both (e.g. KCNJ3, KCNJ5). Luciferase reporter assays were used to validate interactions of miRs with predicted mRNA targets. In conclusion, our study provides a profile of altered miRs in HF human SAN, and a novel transcriptome blueprint to identify molecular targets for SAN dysfunction and arrhythmia treatments in HF.


Assuntos
Arritmias Cardíacas/complicações , Insuficiência Cardíaca/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Nó Sinoatrial/fisiopatologia , Adulto , Idoso , Arritmias Cardíacas/genética , Feminino , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Masculino , MicroRNAs/análise , Pessoa de Meia-Idade , RNA Mensageiro/análise , Transcriptoma , Adulto Jovem
20.
PLoS One ; 15(10): e0237520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002030

RESUMO

OBJECTIVES: Gout is the most prevalent inflammatory arthritis. To study the effects of regular physical activity and exercise intensity on inflammation and clinical outcome, we examined inflammatory pathogenesis in an acute model of murine gout and analyzed human gout patient clinical data as a function of physical activity. METHODS: NF-κB-luciferase reporter mice were organized into four groups and exercised at 0 m/min (non-exercise), 8 m/min (low-intensity), 11 m/min (moderate-intensity), and 15 m/min (high-intensity) for two weeks. Mice subsequently received intra-articular monosodium urate (MSU) crystal injections (0.5mg) and the inflammatory response was analyzed 15 hours later. Ankle swelling, NF-κB activity, histopathology, and tissue infiltration by macrophages and neutrophils were measured. Toll-like receptor (TLR)2 was quantified on peripheral monocytes/neutrophils by flow cytometry and both cytokines and chemokines were measured in serum or synovial aspirates. Clinical data and questionnaires accessing overall physical activity levels were collected from gout patients. RESULTS: Injection of MSU crystals produced a robust inflammatory response with increased ankle swelling, NF-κB activity, and synovial infiltration by macrophages and neutrophils. These effects were partially mitigated by low and moderate-intensity exercise. Furthermore, IL-1ß was decreased at the site of MSU crystal injection, TLR2 expression on peripheral neutrophils was downregulated, and expression of CXCL1 in serum was suppressed with low and moderate-intensity exercise. Conversely, the high-intensity exercise group closely resembled the non-exercised control group by nearly all metrics of inflammation measured in this study. Physically active gout patients had significantly less flares/yr, decreased C-reactive protein (CRP) levels, and lower pain scores relative to physically inactive patients. CONCLUSIONS: Regular, moderate physical activity can produce a quantifiable anti-inflammatory effect capable of partially mitigating the pathologic response induced by intra-articular MSU crystals by downregulating TLR2 expression on circulating neutrophils and suppressing systemic CXCL1. Low and moderate-intensity exercise produces this anti-inflammatory effect to varying degrees, while high-intensity exercise provides no significant difference in inflammation compared to non-exercising controls. Consistent with the animal model, gout patients with higher levels of physical activity have more favorable prognostic data. Collectively, these data suggest the need for further research and may be the foundation to a future paradigm-shift in conventional exercise recommendations provided by Rheumatologists to gout patients.


Assuntos
Quimiocina CXCL1/sangue , Gota/terapia , Inflamação/prevenção & controle , Condicionamento Físico Animal , Receptor 2 Toll-Like/sangue , Animais , Modelos Animais de Doenças , Regulação para Baixo , Exercício Físico/fisiologia , Feminino , Gota/sangue , Gota/patologia , Humanos , Inflamação/sangue , Inflamação/patologia , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neutrófilos/metabolismo , Neutrófilos/patologia , Dor/prevenção & controle , Prognóstico , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA