Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lung Cancer ; 190: 107533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520909

RESUMO

Lung cancer is the leading cause of global cancer-related mortality resulting in âˆ¼ 1.8 million deaths annually. Systemic, molecular targeted, and immune therapies have provided significant improvements of survival outcomes for patients. However, drug resistance usually arises and there is an urgent need for novel therapy screening and personalized medicine. 3D patient-derived organoid (PDO) models have emerged as a more effective and efficient alternative for ex vivo drug screening than 2D cell culture and patient-derived xenograft (PDX) models. In this review, we performed an extensive search of lung cancer PDO-based ex vivo drug screening studies. Lung cancer PDOs were successfully established from fresh or bio-banked sections and/or biopsies, pleural effusions and PDX mouse models. PDOs were subject to ex vivo drug screening with chemotherapy, targeted therapy and/or immunotherapy. PDOs consistently recapitulated the genomic alterations and drug sensitivity of primary tumors. Although sample sizes of the previous studies were limited and some technical challenges remain, PDOs showed great promise in the screening of novel therapy drugs. With the technical advances of high throughput, tumor-on-chip, and combined microenvironment, the drug screening process using PDOs will enhance precision care of lung cancer patients.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Medicina de Precisão/métodos , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pulmão , Organoides/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA