Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Immunol ; 21(9): 1119-1133, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719519

RESUMO

The full neutrophil heterogeneity and differentiation landscape remains incompletely characterized. Here, we profiled >25,000 differentiating and mature mouse neutrophils using single-cell RNA sequencing to provide a comprehensive transcriptional landscape of neutrophil maturation, function and fate decision in their steady state and during bacterial infection. Eight neutrophil populations were defined by distinct molecular signatures. The three mature peripheral blood neutrophil subsets arise from distinct maturing bone marrow neutrophil subsets. Driven by both known and uncharacterized transcription factors, neutrophils gradually acquire microbicidal capability as they traverse the transcriptional landscape, representing an evolved mechanism for fine-tuned regulation of an effective but balanced neutrophil response. Bacterial infection reprograms the genetic architecture of neutrophil populations, alters dynamic transitions between subpopulations and primes neutrophils for augmented functionality without affecting overall heterogeneity. In summary, these data establish a reference model and general framework for studying neutrophil-related disease mechanisms, biomarkers and therapeutic targets at single-cell resolution.


Assuntos
Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Neutrófilos/fisiologia , Peritonite/imunologia , Análise de Célula Única/métodos , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Homeostase , Humanos , Camundongos , Análise de Sequência de RNA
2.
PLoS Pathog ; 14(7): e1007076, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30059535

RESUMO

Phosphate is an essential macronutrient required for cell growth and division. Pho84 is the major high-affinity cell-surface phosphate importer of Saccharomyces cerevisiae and a crucial element in the phosphate homeostatic system of this model yeast. We found that loss of Candida albicans Pho84 attenuated virulence in Drosophila and murine oropharyngeal and disseminated models of invasive infection, and conferred hypersensitivity to neutrophil killing. Susceptibility of cells lacking Pho84 to neutrophil attack depended on reactive oxygen species (ROS): pho84-/- cells were no more susceptible than wild type C. albicans to neutrophils from a patient with chronic granulomatous disease, or to those whose oxidative burst was pharmacologically inhibited or neutralized. pho84-/- mutants hyperactivated oxidative stress signalling. They accumulated intracellular ROS in the absence of extrinsic oxidative stress, in high as well as low ambient phosphate conditions. ROS accumulation correlated with diminished levels of the unique superoxide dismutase Sod3 in pho84-/- cells, while SOD3 overexpression from a conditional promoter substantially restored these cells' oxidative stress resistance in vitro. Repression of SOD3 expression sharply increased their oxidative stress hypersensitivity. Neither of these oxidative stress management effects of manipulating SOD3 transcription was observed in PHO84 wild type cells. Sod3 levels were not the only factor driving oxidative stress effects on pho84-/- cells, though, because overexpressing SOD3 did not ameliorate these cells' hypersensitivity to neutrophil killing ex vivo, indicating Pho84 has further roles in oxidative stress resistance and virulence. Measurement of cellular metal concentrations demonstrated that diminished Sod3 expression was not due to decreased import of its metal cofactor manganese, as predicted from the function of S. cerevisiae Pho84 as a low-affinity manganese transporter. Instead of a role of Pho84 in metal transport, we found its role in TORC1 activation to impact oxidative stress management: overexpression of the TORC1-activating GTPase Gtr1 relieved the Sod3 deficit and ROS excess in pho84-/- null mutant cells, though it did not suppress their hypersensitivity to neutrophil killing or hyphal growth defect. Pharmacologic inhibition of Pho84 by small molecules including the FDA-approved drug foscarnet also induced ROS accumulation. Inhibiting Pho84 could hence support host defenses by sensitizing C. albicans to oxidative stress.


Assuntos
Candida albicans/patogenicidade , Candidíase/metabolismo , Estresse Oxidativo/fisiologia , Simportadores de Próton-Fosfato/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Transporte Biológico/fisiologia , Drosophila , Proteínas Fúngicas/metabolismo , Humanos , Camundongos , Fosfatos/metabolismo , Transdução de Sinais/fisiologia , Virulência
3.
Curr Opin Hematol ; 26(1): 28-33, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407218

RESUMO

PURPOSE OF REVIEW: CXCR2 is key stimulant of immune cell migration and recruitment, especially of neutrophils. Alleviating excessive neutrophil accumulation and infiltration could prevent prolonged tissue damage in inflammatory disorders. This review focuses on recent advances in our understanding of the role of CXCR2 in regulating neutrophil migration and the use of CXCR2 antagonists for therapeutic benefit in inflammatory disorders. RECENT FINDINGS: Recent studies have provided new insights into how CXCR2 signaling regulates hematopoietic cell mobilization and function in both health and disease. We also summarize several CXCR2 regulatory mechanisms during infection and inflammation such as via Wip1, T-bet, P-selectin glycoprotein ligand-1, granulocyte-colony-stimulating factor, and microbiome. Moreover, we provide an update of studies investigating CXCR2 blockade in the laboratory and in clinical trials. SUMMARY: Neutrophil homeostasis, migration, and recruitment must be precisely regulated. The CXCR2 signaling pathway is a potential target for modifying neutrophil dynamics in inflammatory disorders. We discuss the recent clinical use of CXCR2 antagonists for controlling inflammation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Movimento Celular/efeitos dos fármacos , Microbiota/imunologia , Neutrófilos/imunologia , Receptores de Interleucina-8B , Animais , Movimento Celular/imunologia , Fator Estimulador de Colônias de Granulócitos/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Glicoproteínas de Membrana/imunologia , Neutrófilos/patologia , Proteína Fosfatase 2C/imunologia , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/imunologia , Proteínas com Domínio T/imunologia
4.
J Immunol ; 198(7): 2854-2864, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235862

RESUMO

Both microbial infection and sterile inflammation augment bone marrow (BM) neutrophil production, but whether the induced accelerated granulopoiesis is mediated by a common pathway and the nature of such a pathway are poorly defined. We recently established that BM myeloid cell-derived reactive oxygen species (ROS) externally regulate myeloid progenitor proliferation and differentiation in bacteria-elicited emergency granulopoiesis. In this article, we show that BM ROS levels are also elevated during sterile inflammation. Similar to in microbial infection, ROS were mainly generated by the phagocytic NADPH oxidase in Gr1+ myeloid cells. The myeloid cells and their ROS were uniformly distributed in the BM when visualized by multiphoton intravital microscopy, and ROS production was both required and sufficient for sterile inflammation-elicited reactive granulopoiesis. Elevated granulopoiesis was mediated by ROS-induced phosphatase and tensin homolog oxidation and deactivation, leading to upregulated PtdIns(3,4,5)P3 signaling and increased progenitor cell proliferation. Collectively, these results demonstrate that, although infection-induced emergency granulopoiesis and sterile inflammation-elicited reactive granulopoiesis are triggered by different stimuli and are mediated by distinct upstream signals, the pathways converge to NADPH oxidase-dependent ROS production by BM myeloid cells. Thus, BM Gr1+ myeloid cells represent a key hematopoietic niche that supports accelerated granulopoiesis in infective and sterile inflammation. This niche may be an excellent target in various immune-mediated pathologies or immune reconstitution after BM transplantation.


Assuntos
Células Precursoras de Granulócitos/metabolismo , Granulócitos/metabolismo , Hematopoese/imunologia , Inflamação/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Diferenciação Celular/imunologia , Separação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Granulócitos/citologia , Hematopoese/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Confocal , Células Mieloides/citologia , Células Mieloides/metabolismo , Nicho de Células-Tronco/fisiologia
5.
Nucleic Acids Res ; 42(16): 10668-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25122750

RESUMO

Long non-coding RNAs (lncRNAs) play critical roles in diverse cellular processes; however, their involvement in many critical aspects of the immune response including the interferon (IFN) response remains poorly understood. To address this gap, we compared the global gene expression pattern of primary human hepatocytes before and at three time points after treatment with IFN-α. Among ∼ 200 IFN-induced lncRNAs, one transcript showed ∼ 100-fold induction. This RNA, which we named lncRNA-CMPK2, was a spliced, polyadenylated nuclear transcript that was induced by IFN in diverse cell types from human and mouse. Similar to protein-coding IFN-stimulated genes (ISGs), its induction was dependent on JAK-STAT signaling. Intriguingly, knockdown of lncRNA-CMPK2 resulted in a marked reduction in HCV replication in IFN-stimulated hepatocytes, suggesting that it could affect the antiviral role of IFN. We could show that lncRNA-CMPK2 knockdown resulted in upregulation of several protein-coding antiviral ISGs. The observed upregulation was caused by an increase in both basal and IFN-stimulated transcription, consistent with loss of transcriptional inhibition in knockdown cells. These results indicate that the IFN response involves a lncRNA-mediated negative regulatory mechanism. lncRNA-CMPK2 was strongly upregulated in a subset of HCV-infected human livers, suggesting a role in modulation of the IFN response in vivo.


Assuntos
Interferon-alfa/farmacologia , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica , Hepatite C/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Interferon gama/farmacologia , Janus Quinases/metabolismo , Fígado/metabolismo , Camundongos , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , Fatores de Transcrição STAT/metabolismo , Regulação para Cima
6.
J Virol ; 87(1): 489-502, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097442

RESUMO

Stress granules (SGs) are cytoplasmic foci composed of stalled translation preinitiation complexes induced by environmental stress stimuli, including viral infection. Since viral propagation completely depends on the host translational machinery, many viruses have evolved to circumvent the induction of SGs or co-opt SG components. In this study, we found that expression of Japanese encephalitis virus (JEV) core protein inhibits SG formation. Caprin-1 was identified as a binding partner of the core protein by an affinity capture mass spectrometry analysis. Alanine scanning mutagenesis revealed that Lys(97) and Arg(98) in the α-helix of the JEV core protein play a crucial role in the interaction with Caprin-1. In cells infected with a mutant JEV in which Lys(97) and Arg(98) were replaced with alanines in the core protein, the inhibition of SG formation was abrogated, and viral propagation was impaired. Furthermore, the mutant JEV exhibited attenuated virulence in mice. These results suggest that the JEV core protein circumvents translational shutoff by inhibiting SG formation through an interaction with Caprin-1 and facilitates viral propagation in vitro and in vivo.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas do Core Viral/metabolismo , Replicação Viral , Substituição de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Análise Mutacional de DNA , Humanos , Espectrometria de Massas , Camundongos , Proteínas Mutantes/metabolismo , Ligação Proteica , Virulência
7.
Sci Immunol ; 9(94): eadn1452, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38530158

RESUMO

Plasma membrane perforation elicited by caspase cleavage of the gasdermin D (GSDMD) N-terminal domain (GSDMD-NT) triggers pyroptosis. The mechanisms underlying GSDMD membrane translocation and pore formation are not fully understood. Here, using a proteomic approach, we identified fatty acid synthase (FASN) as a GSDMD-binding partner. S-palmitoylation of GSDMD at Cys191/Cys192 (human/mouse), catalyzed by palmitoyl acyltransferases ZDHHC5 and ZDHHC9 and facilitated by reactive oxygen species (ROS), directly mediated membrane translocation of GSDMD-NT but not full-length GSDMD (GSDMD-FL). Palmitoylation of GSDMD-FL could be induced before inflammasome activation by stimuli such as lipopolysaccharide (LPS), consequently serving as an essential molecular event in macrophage priming. Inhibition of GSDMD palmitoylation suppressed macrophage pyroptosis and IL-1ß release, mitigated organ damage, and enhanced the survival of septic mice. Thus, GSDMD-NT palmitoylation is a key regulatory mechanism controlling GSDMD membrane localization and activation, which may offer an additional target for modulating immune activity in infectious and inflammatory diseases.


Assuntos
Piroptose , Animais , Humanos , Camundongos , Gasderminas , Lipoilação , Proteômica
8.
J Proteome Res ; 12(6): 2537-51, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23682656

RESUMO

Hepatitis C virus (HCV) is a major cause of chronic liver disease. HCV NS5A protein plays an important role in HCV infection through its interactions with other HCV proteins and host factors. In an attempt to further our understanding of the biological context of protein interactions between NS5A and host factors in HCV pathogenesis, we generated an extensive physical interaction map between NS5A and cellular factors. By combining a yeast two-hybrid assay with comprehensive literature mining, we built the NS5A interactome composed of 132 human proteins that interact with NS5A. These interactions were integrated into a high-confidence human protein interactome (HPI) with the help of the TargetMine data warehouse system to infer an overall protein interaction map linking NS5A with the components of the host cellular networks. The NS5A-host interactions that were integrated with the HPI were shown to participate in compact and well-connected cellular networks. Functional analysis of the NS5A "infection" network using TargetMine highlighted cellular pathways associated with immune system, cellular signaling, cell adhesion, cellular growth and death among others, which were significantly targeted by NS5A-host interactions. In addition, cellular assays with in vitro HCV cell culture systems identified two ER-localized host proteins RTN1 and RTN3 as novel regulators of HCV propagation. Our analysis builds upon the present understanding of the role of NS5A protein in HCV pathogenesis and provides potential targets for more effective anti-HCV therapeutic intervention.


Assuntos
Proteínas de Transporte/genética , Hepacivirus/imunologia , Hepatite C Crônica/genética , Interações Hospedeiro-Patógeno , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Mapas de Interação de Proteínas , Proteínas não Estruturais Virais/genética , Proteínas de Transporte/imunologia , Adesão Celular , Linhagem Celular , Mineração de Dados , Expressão Gênica , Hepatite C Crônica/imunologia , Hepatite C Crônica/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Proteínas de Membrana/imunologia , Proteínas do Tecido Nervoso/imunologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido , Proteínas não Estruturais Virais/imunologia
9.
J Virol ; 86(3): 1382-93, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22114337

RESUMO

The robust cell culture systems for hepatitis C virus (HCV) are limited to those using cell culture-adapted clones (HCV in cell culture [HCVcc]) and cells derived from the human hepatoma cell line Huh7. However, accumulating data suggest that host factors, including innate immunity and gene polymorphisms, contribute to the variation in host response to HCV infection. Therefore, the existing in vitro systems for HCV propagation are not sufficient to elucidate the life cycle of HCV. A liver-specific microRNA, miR122, has been shown to participate in the efficient replication of HCV. In this study, we examined the possibility of establishing a new permissive cell line for HCV propagation by the expression of miR122. A high level of miR122 was expressed by a lentiviral vector placed into human liver cell lines at a level comparable to the endogenous level in Huh7 cells. Among the cell lines that we examined, Hep3B cells stably expressing miR122 (Hep3B/miR122) exhibited a significant enhancement of HCVcc propagation. Surprisingly, the levels of production of infectious particles in Hep3B/miR122 cells upon infection with HCVcc were comparable to those in Huh7 cells. Furthermore, a line of "cured" cells, established by elimination of HCV RNA from the Hep3B/miR122 replicon cells, exhibited an enhanced expression of miR122 and a continuous increase of infectious titers of HCVcc in every passage. The establishment of the new permissive cell line for HCVcc will have significant implications not only for basic HCV research but also for the development of new therapeutics.


Assuntos
Hepacivirus/fisiologia , MicroRNAs/genética , Linhagem Celular Tumoral , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Humanos , Reação em Cadeia da Polimerase , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Replicação Viral
10.
J Virol ; 86(15): 7918-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22593164

RESUMO

Hepatitis C virus (HCV) is one of the most common etiologic agents of chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma. In addition, HCV infection is often associated with extrahepatic manifestations (EHM), including mixed cryoglobulinemia and non-Hodgkin's lymphoma. However, the mechanisms of cell tropism of HCV and HCV-induced EHM remain elusive, because in vitro propagation of HCV has been limited in the combination of cell culture-adapted HCV (HCVcc) and several hepatic cell lines. Recently, a liver-specific microRNA called miR-122 was shown to facilitate the efficient propagation of HCVcc in several hepatic cell lines. In this study, we evaluated the importance of miR-122 on the replication of HCV in nonhepatic cells. Among the nonhepatic cell lines expressing functional HCV entry receptors, Hec1B cells derived from human uterus exhibited a low level of replication of the HCV genome upon infection with HCVcc. Exogenous expression of miR-122 in several cells facilitates efficient viral replication but not production of infectious particles, probably due to the lack of hepatocytic lipid metabolism. Furthermore, expression of mutant miR-122 carrying a substitution in a seed domain was required for efficient replication of mutant HCVcc carrying complementary substitutions in miR-122-binding sites, suggesting that specific interaction between miR-122 and HCV RNA is essential for the enhancement of viral replication. In conclusion, although miR-122 facilitates efficient viral replication in nonhepatic cells, factors other than miR-122, which are most likely specific to hepatocytes, are required for HCV assembly.


Assuntos
Regulação da Expressão Gênica , Hepacivirus/fisiologia , Hepatite C/metabolismo , MicroRNAs/biossíntese , Montagem de Vírus/fisiologia , Genoma Viral/fisiologia , Células HEK293 , Células Hep G2 , Hepatite C/genética , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Fígado/metabolismo , Fígado/virologia , MicroRNAs/genética , Mutação , Especificidade de Órgãos/genética , RNA Viral/genética , RNA Viral/metabolismo
11.
bioRxiv ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865189

RESUMO

Gasdermin D (GSDMD)-mediated macrophage pyroptosis plays a critical role in inflammation and host defense. Plasma membrane perforation elicited by caspase-cleaved GSDMD N-terminal domain (GSDMD-NT) triggers membrane rupture and subsequent pyroptotic cell death, resulting in release of pro-inflammatory IL-1ß and IL-18. However, the biological processes leading to its membrane translocation and pore formation are not fully understood. Here, using a proteomics approach, we identified fatty acid synthase (FASN) as a GSDMD-binding partner and demonstrated that post-translational palmitoylation of GSDMD at Cys191/Cys192 (human/mouse) led to membrane translocation of GSDMD-NT but not full-length GSDMD. GSDMD lipidation, mediated by palmitoyl acyltransferases ZDHHC5/9 and facilitated by LPS-induced reactive oxygen species (ROS), was essential for GSDMD pore-forming activity and pyroptosis. Inhibition of GSDMD palmitoylation with palmitate analog 2-bromopalmitate or a cell permeable GSDMD-specific competing peptide suppressed pyroptosis and IL-1ß release in macrophages, mitigated organ damage, and extended the survival of septic mice. Collectively, we establish GSDMD-NT palmitoylation as a key regulatory mechanism controlling GSDMD membrane localization and activation, providing a novel target for modulating immune activity in infectious and inflammatory diseases. One Sentence Summary: LPS-induced palmitoylation at Cys191/Cys192 is required for GSDMD membrane translocation and its pore-forming activity in macrophages.

12.
Methods Mol Biol ; 2696: 199-210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37578724

RESUMO

The Nod-like Receptor (NLR) apoptosis inhibitory proteins (NAIPs) are cytosolic receptors that sense cytosolic bacterial proteins. NAIP ligation induces its association with NLRC4, leading to the assembly of the NAIP/NLRC4 inflammasome, which induces the activation of the caspase-1 protease. Caspase-1 then cleaves pro-interleukin (IL)-1ß, pro-IL-18, and gasdermin D and induces a form of pro-inflammatory cell death, pyroptosis. These processes culminate in host defense against bacterial infection. Here we describe methods for activating NAIP/NLRC4 inflammasome signalling in human and murine macrophages and quantifying inflammasome-induced cell death.


Assuntos
Proteínas de Ligação ao Cálcio , Inflamassomos , Animais , Camundongos , Humanos , Inflamassomos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Morte Celular , Caspases/metabolismo , Caspase 1/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo
13.
J Proteome Res ; 11(7): 3664-79, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22646850

RESUMO

Hepatitis C virus (HCV) causes chronic liver disease worldwide. HCV Core protein (Core) forms the viral capsid and is crucial for HCV pathogenesis and HCV-induced hepatocellular carcinoma, through its interaction with the host factor proteasome activator PA28γ. Here, using BD-PowerBlot high-throughput Western array, we attempt to further investigate HCV pathogenesis by comparing the protein levels in liver samples from Core-transgenic mice with or without the knockout of PA28γ expression (abbreviated PA28γ(-/-)CoreTG and CoreTG, respectively) against the wild-type (WT). The differentially expressed proteins integrated into the human interactome were shown to participate in compact and well-connected cellular networks. Functional analysis of the interaction networks using a newly developed data warehouse system highlighted cellular pathways associated with vesicular transport, immune system, cellular adhesion, and cell growth and death among others that were prominently influenced by Core and PA28γ in HCV infection. Follow-up assays with in vitro HCV cell culture systems validated VTI1A, a vesicular transport associated factor, which was upregulated in CoreTG but not in PA28γ(-/-)CoreTG, as a novel regulator of HCV release but not replication. Our analysis provided novel insights into the Core-PA28γ interplay in HCV pathogenesis and identified potential targets for better anti-HCV therapy and potentially novel biomarkers of HCV infection.


Assuntos
Autoantígenos/genética , Hepacivirus/fisiologia , Hepatite C/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteínas do Core Viral/biossíntese , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Morte Celular/genética , Linhagem Celular , Técnicas de Inativação de Genes , Hepacivirus/imunologia , Hepatite C/imunologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexo de Endopeptidases do Proteassoma/deficiência , Mapas de Interação de Proteínas , Proteoma/metabolismo , Proteômica , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Recombinantes/biossíntese , Vesículas Transportadoras/metabolismo , Liberação de Vírus , Replicação Viral
14.
J Virol ; 85(24): 13185-94, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21994453

RESUMO

Hepatitis C virus (HCV) is a major cause of chronic liver diseases. A high risk of chronicity is the major concern of HCV infection, since chronic HCV infection often leads to liver cirrhosis and hepatocellular carcinoma. Infection with the HCV genotype 1 in particular is considered a clinical risk factor for the development of hepatocellular carcinoma, although the molecular mechanisms of the pathogenesis are largely unknown. Autophagy is involved in the degradation of cellular organelles and the elimination of invasive microorganisms. In addition, disruption of autophagy often leads to several protein deposition diseases. Although recent reports suggest that HCV exploits the autophagy pathway for viral propagation, the biological significance of the autophagy to the life cycle of HCV is still uncertain. Here, we show that replication of HCV RNA induces autophagy to inhibit cell death. Cells harboring an HCV replicon RNA of genotype 1b strain Con1 but not of genotype 2a strain JFH1 exhibited an incomplete acidification of the autolysosome due to a lysosomal defect, leading to the enhanced secretion of immature cathepsin B. The suppression of autophagy in the Con1 HCV replicon cells induced severe cytoplasmic vacuolation and cell death. These results suggest that HCV harnesses autophagy to circumvent the harmful vacuole formation and to maintain a persistent infection. These findings reveal a unique survival strategy of HCV and provide new insights into the genotype-specific pathogenicity of HCV.


Assuntos
Autofagia , Morte Celular , Hepacivirus/patogenicidade , Vacúolos/metabolismo , Replicação Viral , Catepsina B/metabolismo , Linhagem Celular , Sobrevivência Celular , Hepacivirus/crescimento & desenvolvimento , Humanos , Concentração de Íons de Hidrogênio , Immunoblotting , Lisossomos/química , Lisossomos/metabolismo , Microscopia Eletrônica , Microscopia de Fluorescência
15.
J Virol ; 85(21): 10976-88, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21865391

RESUMO

Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is kept in a zoonotic transmission cycle between pigs and mosquitoes. JEV causes infection of the central nervous system with a high mortality rate in dead-end hosts, including humans. Many studies have suggested that the flavivirus core protein is not only a component of nucleocapsids but also an important pathogenic determinant. In this study, we identified heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2) as a binding partner of the JEV core protein by pulldown purification and mass spectrometry. Reciprocal coimmunoprecipitation analyses in transfected and infected cells confirmed a specific interaction between the JEV core protein and hnRNP A2. Expression of the JEV core protein induced cytoplasmic retention of hnRNP A2 in JEV subgenomic replicon cells. Small interfering RNA (siRNA)-mediated knockdown of hnRNP A2 resulted in a 90% reduction of viral RNA replication in cells infected with JEV, and the reduction was cancelled by the expression of an siRNA-resistant hnRNP A2 mutant. In addition to the core protein, hnRNP A2 also associated with JEV nonstructural protein 5, which has both methyltransferase and RNA-dependent RNA polymerase activities, and with the 5'-untranslated region of the negative-sense JEV RNA. During one-step growth, synthesis of both positive- and negative-strand JEV RNAs was delayed by the knockdown of hnRNP A2. These results suggest that hnRNP A2 plays an important role in the replication of JEV RNA through the interaction with viral proteins and RNA.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Interações Hospedeiro-Patógeno , RNA Viral/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Humanos , Imunoprecipitação , Replicação Viral
17.
Front Immunol ; 13: 875991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464448

RESUMO

The MRP8-Cre-ires/EGFP transgenic mouse (Mrp8creTg, on C57BL/6J genetic background) is popular in immunological and hematological research for specifically expressing Cre recombinase and an EGFP reporter in neutrophils. It is often crossed with other transgenic lines carrying loxP-flanked genes to achieve restricted gene knockout in neutrophils. However, due to the way in which the line was created, basic knowledge about the MRP8-Cre-ires/EGFP transgene in the host genome, such as its integration site(s) and flanking sequences, remains largely unknown, hampering robust experimental design and data interpretation. Here we used a recently developed technique, targeted locus amplification (TLA) sequencing, to fill these knowledge gaps. We found that the MRP8-Cre-ires/EGFP transgene was integrated into chromosome 5 (5qG2) of the host mouse genome. This integration led to a 44 kb deletion of the host genomic sequence, resulting in complete deletion of Serpine1 and partial deletion of Ap1s1. Having determined the flanking sequences of the transgene, we designed a new genotyping protocol that can distinguish homozygous, heterozygous, and wildtype Mrp8creTg mice. To our surprise, crossing heterozygous mice produced no homozygous Mrp8creTg mice, most likely due to prenatal lethality resulting from disrupted Ap1s1 gene expression.


Assuntos
Integrases , Sítios Internos de Entrada Ribossomal , Animais , Integrases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transgenes
18.
J Virol ; 84(6): 2798-807, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20053738

RESUMO

Japanese encephalitis virus (JEV) is a mosquito-borne RNA virus and one of the most important flaviviruses in the medical and veterinary fields. Although cholesterol has been shown to participate in both the entry and replication steps of JEV, the mechanisms of infection, including the cellular receptors of JEV, remain largely unknown. To clarify the infection mechanisms of JEV, we generated pseudotype (JEVpv) and recombinant (JEVrv) vesicular stomatitis viruses bearing the JEV envelope protein. Both JEVpv and JEVrv exhibited high infectivity for the target cells, and JEVrv was able to propagate and form foci as did authentic JEV. Anti-JEV envelope antibodies neutralized infection of the viruses. Treatment of cells with inhibitors for vacuolar ATPase and clathrin-mediated endocytosis reduced the infectivity of JEVpv, suggesting that JEVpv enters cells via pH- and clathrin-dependent endocytic pathways. Although treatment of the particles of JEVpv, JEVrv, and JEV with cholesterol drastically reduced the infectivity as previously reported, depletion of cholesterol from the particles by treatment with methyl beta-cyclodextrin enhanced infectivity. Furthermore, treatment of cells with sphingomyelinase (SMase), which hydrolyzes membrane-bound sphingomyelin to ceramide, drastically enhanced infection with JEVpv and propagation of JEVrv, and these enhancements were inhibited by treatment with an SMase inhibitor or C(6)-ceramide. These results suggest that ceramide plays crucial roles in not only entry but also egress processes of JEV, and they should assist in the clarification of JEV propagation and the development of novel therapeutics against diseases caused by infection with flaviviruses.


Assuntos
Ceramidas/metabolismo , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Replicação Viral/fisiologia , Animais , Linhagem Celular , Colesterol/metabolismo , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa , Genoma Viral , Humanos , Esfingomielina Fosfodiesterase/metabolismo , Internalização do Vírus
19.
Nat Commun ; 12(1): 6699, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795266

RESUMO

Candida albicans is the most common cause of fungal sepsis. Inhibition of inflammasome activity confers resistance to polymicrobial and LPS-induced sepsis; however, inflammasome signaling appears to protect against C. albicans infection, so inflammasome inhibitors are not clinically useful for candidiasis. Here we show disruption of GSDMD, a known inflammasome target and key pyroptotic cell death mediator, paradoxically alleviates candidiasis, improving outcomes and survival of Candida-infected mice. Mechanistically, C. albicans hijacked the canonical inflammasome-GSDMD axis-mediated pyroptosis to promote their escape from macrophages, deploying hyphae and candidalysin, a pore-forming toxin expressed by hyphae. GSDMD inhibition alleviated candidiasis by preventing C. albicans escape from macrophages while maintaining inflammasome-dependent but GSDMD-independent IL-1ß production for anti-fungal host defenses. This study demonstrates key functions for GSDMD in Candida's escape from host immunity in vitro and in vivo and suggests that GSDMD may be a potential therapeutic target in C. albicans-induced sepsis.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Inflamassomos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Macrófagos/imunologia , Proteínas de Ligação a Fosfato/imunologia , Animais , Candida albicans/fisiologia , Candidíase/genética , Candidíase/microbiologia , Caspase 1/genética , Caspase 1/imunologia , Caspase 1/metabolismo , Células Cultivadas , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estimativa de Kaplan-Meier , Rim/imunologia , Rim/metabolismo , Rim/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo
20.
J Virol ; 83(20): 10427-36, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19656872

RESUMO

Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a component of the replication complex consisting of several host and viral proteins. We have previously reported that human butyrate-induced transcript 1 (hB-ind1) recruits heat shock protein 90 (Hsp90) and FK506-binding protein 8 (FKBP8) to the replication complex through interaction with NS5A. To gain more insights into the biological functions of hB-ind1 in HCV replication, we assessed the potential cochaperone-like activity of hB-ind1, because it has significant homology with cochaperone p23, which regulates Hsp90 chaperone activity. The chimeric p23 in which the cochaperone domain was replaced with the p23-like domain of hB-ind1 exhibited cochaperone activity comparable to that of the authentic p23, inhibiting the glucocorticoid receptor signaling in an Hsp90-dependent manner. Conversely, the chimeric hB-ind1 in which the p23-like domain was replaced with the cochaperone domain of p23 resulted in the same level of recovery of HCV propagation as seen in the authentic hB-ind1 in cells with knockdown of the endogenous hB-ind1. Immunofluorescence analyses revealed that hB-ind1 was colocalized with NS5A, FKBP8, and double-stranded RNA in the HCV replicon cells. HCV replicon cells exhibited a more potent unfolded-protein response (UPR) than the parental and the cured cells upon treatment with an inhibitor for Hsp90. These results suggest that an Hsp90-dependent chaperone pathway incorporating hB-ind1 is involved in protein folding in the membranous web for the circumvention of the UPR and that it facilitates HCV replication.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Hepacivirus/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Replicação Viral/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Hepacivirus/patogenicidade , Humanos , Hidroliases , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/citologia , Rim/virologia , Fígado/citologia , Fígado/virologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/farmacologia , Dobramento de Proteína , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA