RESUMO
Pulmonary arterial hypertension (PAH) is an incurable disease, although symptoms are treated with a range of dilator drugs. Despite their clinical benefits, these drugs are limited by systemic side-effects. It is, therefore, increasingly recognised that using controlled drug-release nanoformulation, with future modifications for targeted drug delivery, may overcome these limitations. This study presents the first evaluation of a promising nanoformulation (highly porous iron-based metal-organic framework (MOF); nanoMIL-89) as a carrier for the PAH-drug sildenafil, which we have previously shown to be relatively non-toxic in vitro and well-tolerated in vivo. In this study, nanoMIL-89 was prepared and charged with a payload of sildenafil (generating Sil@nanoMIL-89). Sildenafil release was measured by Enzyme-Linked Immunosorbent Assay (ELISA), and its effect on cell viability and dilator function in mouse aorta were assessed. Results showed that Sil@nanoMIL-89 released sildenafil over 6 h, followed by a more sustained release over 72 h. Sil@nanoMIL-89 showed no significant toxicity in human blood outgrowth endothelial cells for concentrations up to100µg/ml; however, it reduced the viability of the human pulmonary artery smooth muscle cells (HPASMCs) at concentrations > 3 µg/ml without inducing cellular cytotoxicity. Finally, Sil@nanoMIL-89 induced vasodilation of mouse aorta after a lag phase of 2-4 h. To our knowledge, this study represents the first demonstration of a novel nanoformulation displaying delayed drug release corresponding to vasodilator activity. Further pharmacological assessment of our nanoformulation, including in PAH models, is required and constitutes the subject of ongoing investigations.
Assuntos
Estruturas Metalorgânicas , Inibidores da Fosfodiesterase 5/administração & dosagem , Hipertensão Arterial Pulmonar/tratamento farmacológico , Citrato de Sildenafila/administração & dosagem , Nanomedicina Teranóstica , Animais , Aorta/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Cinética , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/ultraestrutura , Camundongos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/farmacocinética , Hipertensão Arterial Pulmonar/etiologia , Citrato de Sildenafila/química , Citrato de Sildenafila/farmacocinética , Análise Espectral , Vasodilatadores/administração & dosagem , Vasodilatadores/química , Vasodilatadores/farmacocinéticaRESUMO
Abstract: Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Alteration of endothelial cells and the underlying vasculature plays a central role in the pathogenesis of various CVDs. The application of nanoscale materials such as nanoparticles in biomedicine has opened new horizons in the treatment of CVDs. We have previously shown that the iron metal-organic framework nanoparticle, Materials Institut Lavoisier-89 (nanoMIL-89) represents a viable vehicle for future drug delivery of pulmonary arterial hypertension. In this study, we have assessed the cellular uptake of nanoMIL-89 in pulmonary artery endothelial and smooth muscle cells using microscopy imaging techniques. We also tested the cellular responses to nanoMIL-89 using molecular and cellular assays. Microscopic images showed cellular internalization of nanoMIL-89, packaging into endocytic vesicles, and passing to daughter cells during mitosis. Moreover, nanoMIL-89 showed anti-inflammatory activity without any significant cytotoxicity. Our results indicate that nanoMIL-89 formulation may offer promising therapeutic opportunities and set forth a new prototype for drug delivery not only in CVDs, but also for other diseases yet incurable, such as diabetes and cancer.