Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Immunol ; 191(10): 5230-8, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24089192

RESUMO

The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome drives many inflammatory processes and mediates IL-1 family cytokine release. Inflammasome activators typically damage cells and may release lysosomal and mitochondrial products into the cytosol. Macrophages triggered by the NLRP3 inflammasome activator nigericin show reduced mitochondrial function and decreased cellular ATP. Release of mitochondrial reactive oxygen species (ROS) leads to subsequent lysosomal membrane permeabilization (LMP). NLRP3-deficient macrophages show comparable reduced mitochondrial function and ATP loss, but maintain lysosomal acidity, demonstrating that LMP is NLRP3 dependent. A subset of wild-type macrophages undergo subsequent mitochondrial membrane permeabilization and die. Both LMP and mitochondrial membrane permeabilization are inhibited by potassium, scavenging mitochondrial ROS, or NLRP3 deficiency, but are unaffected by cathepsin B or caspase-1 inhibitors. In contrast, IL-1ß secretion is ablated by potassium, scavenging mitochondrial ROS, and both cathepsin B and caspase-1 inhibition. These results demonstrate interplay between lysosomes and mitochondria that sustain NLRP3 activation and distinguish cell death from IL-1ß release.


Assuntos
Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Lisossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Proteínas de Transporte/genética , Caspase 1 , Inibidores de Caspase , Catepsina B/antagonistas & inibidores , Células Cultivadas , Interleucina-1beta/metabolismo , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nigericina , Potássio , Transdução de Sinais
2.
Nitric Oxide ; 26(4): 251-8, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22465476

RESUMO

Since their initial discovery over a century ago, our knowledge of the functions of myoglobin and the mitochondrion has gradually evolved. The mitochondrion, once thought to be solely responsible for energy production, is now known to be an integral redox and apoptotic signal transducer within the cell. Likewise, myoglobin, traditionally thought of only as an oxygen store, has emerged as a physiological catalyst that can modulate reactive oxygen species levels, facilitate oxygen diffusion and scavenge or generate nitric oxide (NO) depending on oxygen tensions within the cell. By virtue of its unique ability to regulate O(2) and NO levels within the cell, myoglobin can modulate mitochondrial function in energy-demanding tissues such as the beating heart and exercising muscle. In this review, we present the conventional functions of myoglobin and mitochondria, and describe how these roles have been reassessed and advanced, particularly in the context of NO and nitrite signaling. We present the mechanisms by which mitochondria and myoglobin regulate one another within the cell through their interactions with NO and oxygen and discuss the implications of these interactions in terms of health and disease.


Assuntos
Mitocôndrias/metabolismo , Mioglobina/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Animais , Difusão Facilitada , Humanos , Nitrito Redutases/metabolismo , Fosforilação Oxidativa , Oxigenases/metabolismo
3.
Nitric Oxide ; 25(2): 70-80, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21277988

RESUMO

Ischemia/reperfusion (IR) injury is a central component in the pathogenesis of several diseases and is a leading cause of morbidity and mortality in the western world. Subcellularly, mitochondrial dysfunction, characterized by depletion of ATP, calcium-induced opening of the mitochondrial permeability transition pore, and exacerbated reactive oxygen species (ROS) formation, plays an integral role in the progression of IR injury. Nitric oxide (NO) and more recently nitrite (NO(2)(-)) are known to modulate mitochondrial function, mediate cytoprotection after IR and have been implicated in the signaling of the highly protective ischemic preconditioning (IPC) program. Here, we review what is known about the role of NO and nitrite in cytoprotection after IR and consider the putative role of nitrite in IPC. Focus is placed on the potential cytoprotective mechanisms involving NO and nitrite-dependent modulation of mitochondrial function.


Assuntos
Citoproteção , Precondicionamento Isquêmico , Mitocôndrias/fisiologia , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Animais , Citocromos c/metabolismo , Glutationa/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Óxido Nítrico Sintase/metabolismo , Nitritos/farmacologia , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
4.
Am J Physiol Cell Physiol ; 299(2): C497-505, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20538765

RESUMO

Glutathione transport into mitochondria is mediated by oxoglutarate (OGC) and dicarboxylate carrier (DIC) in the kidney and liver. However, transport mechanisms in brain mitochondria are unknown. We found that both carriers were expressed in the brain. Using cortical mitochondria incubated with physiological levels of glutathione, we found that butylmalonate, a DIC inhibitor, reduced mitochondrial glutathione to levels similar to those seen in mitochondria incubated without extramitochondrial glutathione (59% of control). In contrast, phenylsuccinate, an OGC inhibitor, had no effect (97% of control). Additional experiments with DIC and OGC short hairpin RNA in neuronal-like PC12 cells resulted in similar findings. Significantly, DIC inhibition resulted in increased reactive oxygen species (ROS) content in and H(2)O(2) release from mitochondria. It also led to decreased membrane potential, increased basal respiration rates, and decreased phosphorus-to-oxygen (P/O) ratios, especially when electron transport was initiated from complex I. Accordingly, we found that DIC inhibition impaired complex I activity, but not those for complexes II and III. This impairment was not associated with dislodgment of complex subunits. These results suggest that DIC is the main glutathione transporter in cortical mitochondria and that DIC-mediated glutathione transport is essential for these mitochondria to maintain ROS homeostasis and normal respiratory functions.


Assuntos
Encéfalo/metabolismo , Transportadores de Ácidos Dicarboxílicos/fisiologia , Glutationa/metabolismo , Homeostase/fisiologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Transporte Biológico/fisiologia , Respiração Celular/fisiologia , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células PC12 , Ratos , Ratos Sprague-Dawley
5.
Cell Rep ; 15(8): 1700-14, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27184852

RESUMO

Inhalation of environmental antigens such as allergens does not always induce inflammation in the respiratory tract. While antigen-presenting cells (APCs), including dendritic cells and macrophages, take up inhaled antigens, the cell-intrinsic molecular mechanisms that prevent an inflammatory response during this process, such as activation of the transcription factor NF-κB, are not well understood. Here, we show that the nuclear receptor PPARγ plays a critical role in blocking NF-κB activation in response to inhaled antigens to preserve immune tolerance. Tolerance induction promoted mitochondrial respiration, generation of H2O2, and suppression of NF-κB activation in WT, but not PPARγ-deficient, APCs. Forced restoration of H2O2 in PPARγ-deficient cells suppressed IκBα degradation and NF-κB activation. Conversely, scavenging reactive oxygen species from mitochondria promoted IκBα degradation with loss of regulatory and promotion of inflammatory T cell responses in vivo. Thus, communication between PPARγ and the mitochondria maintains immune quiescence in the airways.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Peróxido de Hidrogênio/metabolismo , Pulmão/citologia , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Animais , Antígeno CD11c/metabolismo , Proliferação de Células , Citocinas/genética , Células Dendríticas/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Tolerância Imunológica , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , PPAR gama/deficiência , PPAR gama/metabolismo , Regiões Promotoras Genéticas/genética , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/citologia
6.
J Clin Invest ; 125(2): 521-38, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25562319

RESUMO

Although aging is a known risk factor for idiopathic pulmonary fibrosis (IPF), the pathogenic mechanisms that underlie the effects of advancing age remain largely unexplained. Some age-related neurodegenerative diseases have an etiology that is related to mitochondrial dysfunction. Here, we found that alveolar type II cells (AECIIs) in the lungs of IPF patients exhibit marked accumulation of dysmorphic and dysfunctional mitochondria. These mitochondrial abnormalities in AECIIs of IPF lungs were associated with upregulation of ER stress markers and were recapitulated in normal mice with advancing age in response to stimulation of ER stress. We found that impaired mitochondria in IPF and aging lungs were associated with low expression of PTEN-induced putative kinase 1 (PINK1). Knockdown of PINK1 expression in lung epithelial cells resulted in mitochondria depolarization and expression of profibrotic factors. Moreover, young PINK1-deficient mice developed similarly dysmorphic, dysfunctional mitochondria in the AECIIs and were vulnerable to apoptosis and development of lung fibrosis. Our data indicate that PINK1 deficiency results in swollen, dysfunctional mitochondria and defective mitophagy, and promotes fibrosis in the aging lung.


Assuntos
Apoptose , Fibrose Pulmonar Idiopática/enzimologia , Mitocôndrias/metabolismo , Mitofagia , Proteínas Quinases/deficiência , Alvéolos Pulmonares/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/genética , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Quinases/metabolismo , Alvéolos Pulmonares/patologia , Regulação para Cima/genética
7.
Cell Rep ; 7(2): 476-487, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24703837

RESUMO

Acute lung injury (ALI) is linked to mitochondrial injury, resulting in impaired cellular oxygen utilization; however, it is unknown how these events are linked on the molecular level. Cardiolipin, a mitochondrial-specific lipid, is generated by cardiolipin synthase (CLS1). Here, we show that S. aureus activates a ubiquitin E3 ligase component, Fbxo15, that is sufficient to mediate proteasomal degradation of CLS1 in epithelia, resulting in decreased cardiolipin availability and disrupted mitochondrial function. CLS1 is destabilized by the phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), which binds CLS1 to phosphorylate and regulates CLS1 disposal. Like Fbxo15, PINK1 interacts with and regulates levels of CLS1 through a mechanism dependent upon Thr219. S. aureus infection upregulates this Fbxo15-PINK1 pathway to impair mitochondrial integrity, and Pink1 knockout mice are less prone to S. aureus-induced ALI. Thus, ALI-associated disruption of cellular bioenergetics involves bioeffectors that utilize a phosphodegron to elicit ubiquitin-mediated disposal of a key mitochondrial enzyme.


Assuntos
Antígeno B7-2/metabolismo , Proteínas F-Box/metabolismo , Mitocôndrias/metabolismo , Pneumonia/metabolismo , Proteínas Quinases/metabolismo , Adolescente , Adulto , Animais , Antígeno B7-2/genética , Estudos de Casos e Controles , Linhagem Celular , Células Cultivadas , Criança , Estabilidade Enzimática , Proteínas F-Box/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas Quinases/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA