RESUMO
Multifunctional devices integrated with electrochromic and supercapacitance properties are fascinating because of their extensive usage in modern electronic applications. In this work, vanadium-doped cobalt chloride carbonate hydroxide hydrate nanostructures (V-C3H NSs) are successfully synthesized and show unique electrochromic and supercapacitor properties. The V-C3H NSs material exhibits a high specific capacitance of 1219.9 F g-1 at 1 mV s-1 with a capacitance retention of 100% over 30 000 CV cycles. The electrochromic performance of the V-C3H NSs material is confirmed through in situ spectroelectrochemical measurements, where the switching time, coloration efficiency (CE), and optical modulation (∆T) are found to be 15.7 and 18.8 s, 65.85 cm2 C-1 and 69%, respectively. A coupled multilayer artificial neural network (ANN) model is framed to predict potential and current from red (R), green (G), and blue (B) color values. The optimized V-C3H NSs are used as the active materials in the fabrication of flexible/wearable electrochromic micro-supercapacitor devices (FEMSDs) through a cost-effective mask-assisted vacuum filtration method. The fabricated FEMSD exhibits an areal capacitance of 47.15 mF cm-2 at 1 mV s-1 and offers a maximum areal energy and power density of 104.78 Wh cm-2 and 0.04 mW cm-2, respectively. This material's interesting energy storage and electrochromic properties are promising in multifunctional electrochromic energy storage applications.
RESUMO
Quantification of circulating microRNAs (miRNAs) or viral RNAs is of great significance because of their broad relevance to human health. Currently, quantitative reverse transcription polymerase chain reaction (qRT-PCR), as well as microarray and gene sequencing, are considered mainstream techniques for miRNA identification and quantitation and the gold standard for SARS-CoV2 detection in the COVID-19 pandemic. However, these laboratory techniques are challenged by the low levels and wide dynamic range (from aM to nM) of miRNAs in a physiological sample, as well as the difficulty in the implementation in point-of-care settings. Here, we describe a one-step label-free electrochemical sensing technique by assembling self-folded multi-stem DNA-redox probe structure on gold microelectrodes and introducing a reductant, tris(2-carboxyethyl) phosphine hydrochloride (TCEP), in the detection buffer solution to achieve ultrasensitive detection with a detection limit of 0.1 fM that can be further improved if needed.
Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , MicroRNAs , Humanos , MicroRNAs/análise , Microeletrodos , RNA Viral , Pandemias , Limite de Detecção , SARS-CoV-2 , Técnicas Eletroquímicas/métodos , Sondas de DNA , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/químicaRESUMO
The development of efficient materials for the generation and storage of renewable energy is now an urgent task for future energy demand. In this report, molybdenum disulphide hollow sphere (MoS2-HS) and its reduced graphene oxide hybrid (rGO/MoS2-S) have been synthesized and explored for energy generation and storage applications. The surface morphology, crystallinity and elemental composition of the as-synthesized materials have been thoroughly analysed. Inspired by the fascinating morphology of the MoS2-HS and rGO/MoS2-S materials, the electrochemical performance towards hydrogen evolution and supercapacitor has been demonstrated. The rGO/MoS2-S shows enhanced gravimetric capacitance values (318 ± 14 Fg-1) with higher specific energy/power outputs (44.1 ± 2.1 Whkg-1 and 159.16 ± 7.0 Wkg-1) and better cyclic performances (82 ± 0.95% even after 5000 cycles). Further, a prototype of the supercapacitor in a coin cell configuration has been fabricated and demonstrated towards powering a LED. The unique balance of exposed edge site and electrical conductivity of rGO/MoS2-S shows remarkably superior HER performances with lower onset over potential (0.16 ± 0.05 V), lower Tafel slope (75 ± 4 mVdec-1), higher exchange current density (0.072 ± 0.023 mAcm-2) and higher TOF (1.47 ± 0.085 s-1) values. The dual performance of the rGO/MoS2-S substantiates the promising application for hydrogen generation and supercapacitor application of interest.