RESUMO
Polyamine synthesis represents one of the most profound metabolic changes during T cell activation, but the biological implications of this are scarcely known. Here, we show that polyamine metabolism is a fundamental process governing the ability of CD4+ helper T cells (TH) to polarize into different functional fates. Deficiency in ornithine decarboxylase, a crucial enzyme for polyamine synthesis, results in a severe failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across TH cell subsets. Polyamines control TH differentiation by providing substrates for deoxyhypusine synthase, which synthesizes the amino acid hypusine, and mice in which T cells are deficient for hypusine develop severe intestinal inflammatory disease. Polyamine-hypusine deficiency caused widespread epigenetic remodeling driven by alterations in histone acetylation and a re-wired tricarboxylic acid (TCA) cycle. Thus, polyamine metabolism is critical for maintaining the epigenome to focus TH cell subset fidelity.
Assuntos
Linhagem da Célula , Poliaminas/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Colite/imunologia , Colite/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epigenoma , Histonas/metabolismo , Inflamação/imunologia , Inflamação/patologia , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ornitina Descarboxilase/metabolismo , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Fatores de Transcrição/metabolismoRESUMO
Arginase 1 (Arg1), the enzyme catalyzing the conversion of arginine to ornithine, is a hallmark of IL-10-producing immunoregulatory M2 macrophages. However, its expression in T cells is disputed. Here, we demonstrate that induction of Arg1 expression is a key feature of lung CD4+ T cells during mouse in vivo influenza infection. Conditional ablation of Arg1 in CD4+ T cells accelerated both virus-specific T helper 1 (Th1) effector responses and its resolution, resulting in efficient viral clearance and reduced lung pathology. Using unbiased transcriptomics and metabolomics, we found that Arg1-deficiency was distinct from Arg2-deficiency and caused altered glutamine metabolism. Rebalancing this perturbed glutamine flux normalized the cellular Th1 response. CD4+ T cells from rare ARG1-deficient patients or CRISPR-Cas9-mediated ARG1-deletion in healthy donor cells phenocopied the murine cellular phenotype. Collectively, CD4+ T cell-intrinsic Arg1 functions as an unexpected rheostat regulating the kinetics of the mammalian Th1 lifecycle with implications for Th1-associated tissue pathologies.
Assuntos
Arginase , Influenza Humana , Animais , Humanos , Camundongos , Arginase/genética , Arginase/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Glutamina , Cinética , Pulmão/metabolismo , MamíferosRESUMO
Asymmetric cell division, the partitioning of cellular components in response to polarizing cues during mitosis, has roles in differentiation and development. It is important for the self-renewal of fertilized zygotes in Caenorhabditis elegans and neuroblasts in Drosophila, and in the development of mammalian nervous and digestive systems. T lymphocytes, upon activation by antigen-presenting cells (APCs), can undergo asymmetric cell division, wherein the daughter cell proximal to the APC is more likely to differentiate into an effector-like T cell and the distal daughter is more likely to differentiate into a memory-like T cell. Upon activation and before cell division, expression of the transcription factor c-Myc drives metabolic reprogramming, necessary for the subsequent proliferative burst. Here we find that during the first division of an activated T cell in mice, c-Myc can sort asymmetrically. Asymmetric distribution of amino acid transporters, amino acid content, and activity of mammalian target of rapamycin complex 1 (mTORC1) is correlated with c-Myc expression, and both amino acids and mTORC1 activity sustain the differences in c-Myc expression in one daughter cell compared to the other. Asymmetric c-Myc levels in daughter T cells affect proliferation, metabolism, and differentiation, and these effects are altered by experimental manipulation of mTORC1 activity or c-Myc expression. Therefore, metabolic signalling pathways cooperate with transcription programs to maintain differential cell fates following asymmetric T-cell division.
Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Divisão Celular , Polaridade Celular , Ativação Linfocitária , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Animais , Diferenciação Celular/genética , Polaridade Celular/genética , Feminino , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Transcrição GênicaRESUMO
T cell activation results in a rapidly proliferating T cell endowed with a metabolic phenotype necessary for growth and division. However, before the cell can proceed towards this burst of cell division a phase of quiescence occurs, during which the basic mechanisms governing regulation of metabolic reprograming are established. This review focuses on key cellular processes controlling early metabolic regulation and how these circuits of metabolic control dictate distinct cellular fates upon the first asymmetric division.
Assuntos
Divisão Celular Assimétrica , Metabolismo Energético , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Divisão Celular Assimétrica/genética , Divisão Celular Assimétrica/imunologia , Biomarcadores , Regulação da Expressão Gênica , Humanos , Ativação Linfocitária/genética , Transdução de SinaisRESUMO
In higher eukaryotes, several ATP-utilizing enzymes known as hexokinases activate glucose in the glycolysis pathway by phosphorylation to glucose 6-phosphate. In contrast to canonical hexokinases, which use ATP, ADP-dependent glucokinase (ADPGK) catalyzes noncanonical phosphorylation of glucose to glucose 6-phosphate using ADP as a phosphate donor. Initially discovered in Archaea, the human homolog of ADPGK was described only recently. ADPGK's involvement in modified bioenergetics of activated T cells has been postulated, and elevated ADPGK expression has been reported in various cancer tissues. However, the physiological role of ADPGK is still poorly understood, and effective ADPGK inhibitors still await discovery. Here, we show that 8-bromo-substituted adenosine nucleotide inhibits human ADPGK. By solving the crystal structure of archaeal ADPGK in complex with 8-bromoadenosine phosphate (8-Br-AMP) at 1.81 Å resolution, we identified the mechanism of inhibition. We observed that 8-Br-AMP is a competitive inhibitor of ADPGK and that the bromine substitution induces marked structural changes within the protein's active site by engaging crucial catalytic residues. The results obtained using the Jurkat model of activated human T cells suggest its moderate activity in a cellular setting. We propose that our structural insights provide a critical basis for rational development of novel ADPGK inhibitors.
Assuntos
Adenosina/análogos & derivados , Glucoquinase/química , Adenosina/química , Adenosina/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Glucoquinase/antagonistas & inibidores , Glucose/metabolismo , Humanos , Células Jurkat , Conformação ProteicaRESUMO
The review presents general principles for choosing optimal conditions for ecdysteroid separation, identification, and isolation using HPLC/TLC techniques in RP, NP-HILIC or NP modes. Analytics of ecdyteroids pose a still insufficiently resolved problem. Plant-derived ecdysteroids are a point of interest of pharmaceutical industry and sport medicine due to their postulated adaptogenic and anabolic properties. In insects, ecdysteroids regulate larval transformation. Maral root (Rhaponticum carthamoides, Leuzea carthamoides), traditional Siberian folk-medicine plant used as stimulant to boost overall health and fitness, is a particularly rich source of a wide variety of phytoecdysteroids. The similarity of molecular structures of ecdysteroids present in its extracts together with high content of unrelated compounds of similar chromatographic characteristics makes optimization of separation, identification and isolation of ecdysteroids a difficult analytical task. In that respect, two-dimensional separations, two-dimensional separations, 2D HPLC or 2D TLC, could be of use. For identification, the hyphenated techniques are particularly important. Thus, comprehensive overview of MS spectral parameters of ecdysteroids is provided. Described principles could easily be applied for separation of ecdysteroids in extracts from other sources. They are also useful for development of separation procedures for isolation of ecysteroids in preparative-scale applications.
Assuntos
Ecdisteroides/análise , Leuzea/química , Extratos Vegetais/análise , Raízes de Plantas/química , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
The endoplasmic reticulum is a subcellular organelle key in the control of synthesis, folding, and sorting of proteins. Under endoplasmic reticulum stress, an adaptative unfolded protein response is activated; however, if this activation is prolonged, cells can undergo cell death, in part due to oxidative stress and mitochondrial fragmentation. Here, we report that endoplasmic reticulum stress activates c-Abl tyrosine kinase, inducing its translocation to mitochondria. We found that endoplasmic reticulum stress-activated c-Abl interacts with and phosphorylates the mitochondrial fusion protein MFN2, resulting in mitochondrial fragmentation and apoptosis. Moreover, the pharmacological or genetic inhibition of c-Abl prevents MFN2 phosphorylation, mitochondrial fragmentation, and apoptosis in cells under endoplasmic reticulum stress. Finally, in the amyotrophic lateral sclerosis mouse model, where endoplasmic reticulum and oxidative stress has been linked to neuronal cell death, we demonstrated that the administration of c-Abl inhibitor neurotinib delays the onset of symptoms. Our results uncovered a function of c-Abl in the crosstalk between endoplasmic reticulum stress and mitochondrial dynamics via MFN2 phosphorylation.
RESUMO
This article shows that T cell activation-induced expression of the cytokines IL-2 and -4 is determined by an oxidative signal originating from mitochondrial respiratory complex I. We also report that ciprofloxacin, a fluoroquinolone antibiotic, exerts immunosuppressive effects on human T cells suppressing this novel mechanism. Sustained treatment of preactivated primary human T cells with ciprofloxacin results in a dose-dependent inhibition of TCR-induced generation of reactive oxygen species (ROS) and IL-2 and -4 expression. This is accompanied by the loss of mitochondrial DNA and a resulting decrease in activity of the complex I. Consequently, using a complex I inhibitor or small interfering RNA-mediated downregulation of the complex I chaperone NDUFAF1, we demonstrate that TCR-triggered ROS generation by complex I is indispensable for activation-induced IL-2 and -4 expression and secretion in resting and preactivated human T cells. This oxidative signal (H(2)O(2)) synergizes with Ca(2+) influx for IL-2/IL-4 expression and facilitates induction of the transcription factors NF-kappaB and AP-1. Moreover, using T cells isolated from patients with atopic dermatitis, we show that inhibition of complex I-mediated ROS generation blocks disease-associated spontaneous hyperexpression and TCR-induced expression of IL-4. Prolonged ciprofloxacin treatment of T cells from patients with atopic dermatitis also blocks activation-induced expression and secretion of IL-4. Thus, our work shows that the activation phenotype of T cells is controlled by a mitochondrial complex I-originated oxidative signal.
Assuntos
Ciprofloxacina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imunossupressores/farmacologia , Interleucina-2/genética , Interleucina-4/genética , Ativação Linfocitária/imunologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia , Células Cultivadas , DNA Mitocondrial/antagonistas & inibidores , DNA Mitocondrial/genética , Dermatite Atópica/enzimologia , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Regulação da Expressão Gênica/imunologia , Humanos , Imunofenotipagem , Interleucina-2/antagonistas & inibidores , Interleucina-2/metabolismo , Interleucina-4/antagonistas & inibidores , Interleucina-4/metabolismo , Células Jurkat , Ativação Linfocitária/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , NADH Desidrogenase/antagonistas & inibidores , NADH Desidrogenase/genética , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/biossíntese , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/enzimologia , Células Th2/efeitos dos fármacos , Células Th2/enzimologia , Células Th2/imunologia , Fatores de TempoRESUMO
Intracerebral accumulation of neurotoxic dicarboxylic acids (DCAs) plays an important pathophysiological role in glutaric aciduria type I and methylmalonic aciduria. Therefore, we investigated the transport characteristics of accumulating DCAs - glutaric (GA), 3-hydroxyglutaric (3-OH-GA) and methylmalonic acid (MMA) - across porcine brain capillary endothelial cells (pBCEC) and human choroid plexus epithelial cells (hCPEC) representing in vitro models of the blood-brain barrier (BBB) and the choroid plexus respectively. We identified expression of organic acid transporters 1 (OAT1) and 3 (OAT3) in pBCEC on mRNA and protein level. For DCAs tested, transport from the basolateral to the apical site (i.e. efflux) was higher than influx. Efflux transport of GA, 3-OH-GA, and MMA across pBCEC was Na(+)-dependent, ATP-independent, and was inhibited by the OAT substrates para-aminohippuric acid (PAH), estrone sulfate, and taurocholate, and the OAT inhibitor probenecid. Members of the ATP-binding cassette transporter family or the organic anion transporting polypeptide family, namely MRP2, P-gp, BCRP, and OATP1B3, did not mediate transport of GA, 3-OH-GA or MMA confirming the specificity of efflux transport via OATs. In hCPEC, cellular import of GA was dependent on Na(+)-gradient, inhibited by NaCN, and unaffected by probenecid suggesting a Na(+)-dependent DCA transporter. Specific transport of GA across hCPEC, however, was not found. In conclusion, our results indicate a low but specific efflux transport for GA, 3-OH-GA, and MMA across pBCEC, an in vitro model of the BBB, via OAT1 and OAT3 but not across hCPEC, an in vitro model of the choroid plexus.
Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Ácidos Dicarboxílicos/metabolismo , Glutaratos/urina , Ácido Metilmalônico/urina , Animais , Sequência de Bases , Células Cultivadas , Primers do DNA/genética , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Glutaril-CoA Desidrogenase/deficiência , Humanos , Técnicas In Vitro , Erros Inatos do Metabolismo/metabolismo , Metilmalonil-CoA Mutase/deficiência , Modelos Biológicos , Neurotoxinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SuínosRESUMO
Aggressive cancers often have activating mutations in growth-controlling oncogenes and inactivating mutations in tumor-suppressor genes. In neuroblastoma, amplification of the MYCN oncogene and inactivation of the ATRX tumor-suppressor gene correlate with high-risk disease and poor prognosis. Here we show that ATRX mutations and MYCN amplification are mutually exclusive across all ages and stages in neuroblastoma. Using human cell lines and mouse models, we found that elevated MYCN expression and ATRX mutations are incompatible. Elevated MYCN levels promote metabolic reprogramming, mitochondrial dysfunction, reactive-oxygen species generation, and DNA-replicative stress. The combination of replicative stress caused by defects in the ATRX-histone chaperone complex, and that induced by MYCN-mediated metabolic reprogramming, leads to synthetic lethality. Therefore, ATRX and MYCN represent an unusual example, where inactivation of a tumor-suppressor gene and activation of an oncogene are incompatible. This synthetic lethality may eventually be exploited to improve outcomes for patients with high-risk neuroblastoma.
Assuntos
Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/metabolismo , Proteína Nuclear Ligada ao X/genética , Animais , Pré-Escolar , Estudos de Coortes , Feminino , Amplificação de Genes , Humanos , Lactente , Masculino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína Nuclear Ligada ao X/metabolismoAssuntos
Archaea , Neoplasias da Próstata , Humanos , Masculino , Archaea/metabolismo , Glucoquinase/metabolismo , PróstataRESUMO
Ensuring robust gamete production even in the face of environmental stress is of utmost importance for species survival, especially in mammals that have low reproductive rates. Here, we describe a family of genes called melanoma antigens (MAGEs) that evolved in eutherian mammals and are normally restricted to expression in the testis (http://MAGE.stjude.org) but are often aberrantly activated in cancer. Depletion of Mage-a genes disrupts spermatogonial stem cell maintenance and impairs repopulation efficiency in vivo. Exposure of Mage-a knockout mice to genotoxic stress or long-term starvation that mimics famine in nature causes defects in spermatogenesis, decreased testis weights, diminished sperm production, and reduced fertility. Last, human MAGE-As are activated in many cancers where they promote fuel switching and growth of cells. These results suggest that mammalian-specific MAGE genes have evolved to protect the male germline against environmental stress, ensure reproductive success under non-optimal conditions, and are hijacked by cancer cells.
Assuntos
Antígenos Específicos de Melanoma/genética , Neoplasias/genética , Espermatogênese/genética , Estresse Fisiológico/genética , Testículo/fisiologia , Animais , Dano ao DNA , Desoxiglucose/farmacologia , Evolução Molecular , Feminino , Regulação Neoplásica da Expressão Gênica , Células Germinativas , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espermatogônias/efeitos dos fármacos , InaniçãoRESUMO
ADP-dependent glucokinase (ADPGK) is an alternative novel glucose phosphorylating enzyme in a modified glycolysis pathway of hyperthermophilic Archaea. In contrast to classical ATP-dependent hexokinases, ADPGK utilizes ADP as a phosphoryl group donor. Here, we present a crystal structure of archaeal ADPGK from Methanocaldococcus jannaschii in complex with an inhibitor, 5-iodotubercidin, d-glucose, inorganic phosphate, and a magnesium ion. Detailed analysis of the architecture of the active site allowed for confirmation of the previously proposed phosphorylation mechanism and the crucial role of the invariant arginine residue (Arg197). The crystal structure shows how the phosphate ion, while mimicking a ß-phosphate group, is positioned in the proximity of the glucose moiety by arginine and the magnesium ion, thus providing novel insights into the mechanism of catalysis. In addition, we demonstrate that 5-iodotubercidin inhibits human ADPGK-dependent T cell activation-induced reactive oxygen species (ROS) release and downstream gene expression, and as such it may serve as a model compound for further screening for hADPGK-specific inhibitors.
Assuntos
Inibidores Enzimáticos/farmacologia , Glucoquinase/química , Glucoquinase/metabolismo , Methanocaldococcus/enzimologia , Tubercidina/análogos & derivados , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Células Jurkat , Modelos Moleculares , Fosfatos/metabolismo , Estrutura Secundária de Proteína , Espécies Reativas de Oxigênio/metabolismo , Tubercidina/farmacologiaRESUMO
The high-mobility group box 1 (HMGB1) protein has a central role in immunological antitumour defense. Here we show that natural killer cell-derived HMGB1 directly eliminates cancer cells by triggering metabolic cell death. HMGB1 allosterically inhibits the tetrameric pyruvate kinase isoform M2, thus blocking glucose-driven aerobic respiration. This results in a rapid metabolic shift forcing cells to rely solely on glycolysis for the maintenance of energy production. Cancer cells can acquire resistance to HMGB1 by increasing glycolysis using the dimeric form of PKM2, and employing glutaminolysis. Consistently, we observe an increase in the expression of a key enzyme of glutaminolysis, malic enzyme 1, in advanced colon cancer. Moreover, pharmaceutical inhibition of glutaminolysis sensitizes tumour cells to HMGB1 providing a basis for a therapeutic strategy for treating cancer.
Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/fisiopatologia , Proteína HMGB1/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Morte Celular , Linhagem Celular Tumoral , Respiração Celular , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Glucose/metabolismo , Glicólise , Proteína HMGB1/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da TireoideRESUMO
This paper illustrates a method for determining trace amounts of CO, CH4 and CO2 with the detection limit of 0.15, 0.15 and 0.20 microg/l, respectively, in refinery hydrogen gases or in air. A simple modification of a gas chromatograph equipped with a flame-ionization detector is presented. A Porapak Q column, additionally connected with a short molecular sieve 5A packed column and a catalytic hydrogenation reactor on the Ni catalyst have been applied. The principle of the analytical method proposed is the separation of CO from O2 before the introduction of CO to the methanizer. The analytical procedure and examples of the results obtained have been presented. The modification applied makes it possible to use the GC instrument for other determinations, requiring utilization of the Porapak Q column and the flame-ionization detector. In such cases, the short molecular sieve 5A column and the methanizer can be by-passed.
Assuntos
Dióxido de Carbono/análise , Monóxido de Carbono/análise , Cromatografia Gasosa/métodos , Gases/química , Hidrogênio/química , Metano/análiseRESUMO
Early scientific reports limited the cell biological role of reactive oxygen species (ROS) to the cause of pathological damage. However, extensive research performed over the last decade led to a wide recognition of intracellular oxidative/redox signaling as a crucial mechanism of homeostatic regulation. Amongst different cellular processes known to be influenced by redox signaling, T-cell activation is one of the most established. Numerous studies reported an indispensible role for ROS as modulators of T-cell receptor-induced transcription. Nevertheless, mechanistic details regarding signaling pathways triggered by ROS are far from being delineated. The nature and interplay between enzymatic sources involved in the generation of "oxidative signals" are also a matter of ongoing research. In particular, active participation of the mitochondrial respiratory chain as ROS producer constitutes an intriguing issue with various implications for bioenergetics of activated T cells as well as for T-cell-mediated pathologies. The aim of the current review is to address these interesting concepts.
Assuntos
Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/fisiologia , Animais , Transporte de Elétrons/fisiologia , Metabolismo Energético , Homeostase , Humanos , Ativação Linfocitária , Oxirredução , Estresse Oxidativo , Transdução de SinaisRESUMO
Mitochondria-originating reactive oxygen species (ROS) control T cell receptor (TCR)-induced gene expression. Here, we show that TCR-triggered activation of ADP-dependent glucokinase (ADPGK), an alternative, glycolytic enzyme typical for Archaea, mediates generation of the oxidative signal. We also show that ADPGK is localized in the endoplasmic reticulum and suggest that its active site protrudes toward the cytosol. The ADPGK-driven increase in glycolytic metabolism coincides with TCR-induced glucose uptake, downregulation of mitochondrial respiration, and deviation of glycolysis toward mitochondrial glycerol-3-phosphate dehydrogenase(GPD) shuttle; i.e., a metabolic shift to aerobic glycolysis similar to the Warburg effect. The activation of respiratory-chain-associated GPD2 results in hyperreduction of ubiquinone and ROS release from mitochondria. In parallel, mitochondrial bioenergetics and ultrastructure are altered. Downregulation of ADPGK or GPD2 abundance inhibits oxidative signal generation and induction of NF-κB-dependent gene expression, whereas overexpression of ADPGK potentiates them.
Assuntos
Glucoquinase/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/metabolismo , Sequência de Aminoácidos , Archaea/enzimologia , Regulação para Baixo , Retículo Endoplasmático/enzimologia , Glucoquinase/antagonistas & inibidores , Glucoquinase/química , Glicerolfosfato Desidrogenase/antagonistas & inibidores , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Glicólise , Humanos , Células Jurkat , Ativação Linfocitária , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Dados de Sequência Molecular , NF-kappa B/metabolismo , Estrutura Secundária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Alinhamento de Sequência , Linfócitos T/imunologia , Ubiquinona/metabolismoRESUMO
Aberrant signaling of the nuclear facotr (NF-kappaB) pathway has been identified as a mediator of survival and apoptosis resistance in leukemias and lymphomas. Here, we report that cell death of cutaneous T-cell lymphoma cell lines induced by inhibition of the NF-kappaB pathway is independent of caspases or classic death receptors. We found that free intracellular iron and reactive oxygen species (ROS) are the main mediators of this cell death. Antioxidants such as N-Acetyl-l-cysteine and glutathione or the iron chelator desferrioxamine effectively block cell death in cutaneous T-cell lymphoma cell lines or primary T cells from Sézary patients. We show that inhibition of constitutively active NF-kappaB causes down-regulation of ferritin heavy chain (FHC) that leads to an increase of free intracellular iron, which, in turn, induces massive generation of ROS. Furthermore, direct down-regulation of FHC by siRNA caused a ROS-dependent cell death. Finally, high concentrations of ROS induce cell death of malignant T cells. In contrast, T cells isolated from healthy donors do not display down-regulation of FHC and, therefore, do not show an increase in iron and cell death upon NF-kappaB inhibition. In addition, in a murine T-cell lymphoma model, we show that inhibition of NF-kappaB and subsequent down-regulation of FHC significantly delays tumor growth in vivo. Thus, our results promote FHC as a potential target for effective therapy in lymphomas with aberrant NF-kappaB signaling.