Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105480, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992803

RESUMO

The bone-derived hormone fibroblast growth factor-23 (FGF23) has recently received much attention due to its association with chronic kidney disease and cardiovascular disease progression. Extracellular sodium concentration ([Na+]) plays a significant role in bone metabolism. Hyponatremia (lower serum [Na+]) has recently been shown to be independently associated with FGF23 levels in patients with chronic systolic heart failure. However, nothing is known about the direct impact of [Na+] on FGF23 production. Here, we show that an elevated [Na+] (+20 mM) suppressed FGF23 formation, whereas low [Na+] (-20 mM) increased FGF23 synthesis in the osteoblast-like cell lines UMR-106 and MC3T3-E1. Similar bidirectional changes in FGF23 abundance were observed when osmolality was altered by mannitol but not by urea, suggesting a role of tonicity in FGF23 formation. Moreover, these changes in FGF23 were inversely proportional to the expression of NFAT5 (nuclear factor of activated T cells-5), a transcription factor responsible for tonicity-mediated cellular adaptations. Furthermore, arginine vasopressin, which is often responsible for hyponatremia, did not affect FGF23 production. Next, we performed a comprehensive and unbiased RNA-seq analysis of UMR-106 cells exposed to low versus high [Na+], which revealed several novel genes involved in cellular adaptation to altered tonicity. Additional analysis of cells with Crisp-Cas9-mediated NFAT5 deletion indicated that NFAT5 controls numerous genes associated with FGF23 synthesis, thereby confirming its role in [Na+]-mediated FGF23 regulation. In line with these in vitro observations, we found that hyponatremia patients have higher FGF23 levels. Our results suggest that [Na+] is a critical regulator of FGF23 synthesis.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Sódio , Humanos , Fator de Crescimento de Fibroblastos 23/genética , Fator de Crescimento de Fibroblastos 23/metabolismo , Hiponatremia/fisiopatologia , Insuficiência Renal Crônica/fisiopatologia , Sódio/metabolismo , Sódio/farmacologia , Linhagem Celular Tumoral , Linhagem Celular , Animais , Camundongos , Camundongos Endogâmicos C57BL , Arginina Vasopressina/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Ratos
2.
Trends Biochem Sci ; 43(10): 752-789, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30177408

RESUMO

Amino acid transporters (AATs) are membrane-bound transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs have diverse functional roles ranging from neurotransmission to acid-base balance, intracellular energy metabolism, and anabolic and catabolic reactions. In cancer cells and diabetes, dysregulation of AATs leads to metabolic reprogramming, which changes intracellular amino acid levels, contributing to the pathogenesis of cancer, obesity and diabetes. Indeed, the neutral amino acid transporters (NATs) SLC7A5/LAT1 and SLC1A5/ASCT2 are likely involved in several human malignancies. However, a clinical therapy that directly targets AATs has not yet been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, their diverse physiological roles in different tissues and organs, their wide-ranging implications in human diseases and the emerging strategies and tools that will be necessary to target AATs therapeutically.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/química , Aminoácidos/metabolismo , Doença/classificação , Células Epiteliais/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Longevidade , Conformação Proteica , Estresse Fisiológico
3.
Cell Physiol Biochem ; 54(2): 252-270, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32176842

RESUMO

BACKGROUND/AIMS: Store-operated Ca2+ entry (SOCE) through plasma membrane Ca2+ channel Orai1 is essential for many cellular processes. SOCE, activated by ER Ca2+ store-depletion, relies on the gating function of STIM1 Orai1-activating region SOAR of the ER-anchored Ca2+-sensing protein STIM1. Electrophysiologically, SOCE is characterized as Ca2+ release-activated Ca2+ current (ICRAC). A major regulatory mechanism that prevents deleterious Ca2+ overload is the slow Ca2+-dependent inactivation (SCDI) of ICRAC. Several studies have suggested a role of Ca2+/calmodulin (Ca2+/CaM) in triggering SCDI. However, a direct contribution of STIM1 in regulating Ca2+/CaM-mediated SCDI of ICRAC is as yet unclear. METHODS: The Ca2+/CaM binding to STIM1 was tested by pulling down recombinant GFP-tagged human STIM1 C-terminal fragments on CaM sepharose beads. STIM1 was knocked out by CRISPR/Cas9 technique in HEK293 cells stably overexpressing human Orai1. Store-operated Ca2+ influx was measured using Fluorometric Imaging Plate Reader and whole-cell patch clamp in cells transfected with STIM1 CaM binding mutants. The involvement of Ca2+/CaM in SCDI was investigated by including recombinant human CaM in patch pipette in electrophysiology. RESULTS: Here we identified residues Leu374/Val375 (H1) and Leu390/Phe391 (H2) within SOAR that serve as hydrophobic anchor sites for Ca2+/CaM binding. The bifunctional H2 site is critical for both Orai1 activation and Ca2+/CaM binding. Single residue mutations of Phe391 to less hydrophobic residues significantly diminished SOCE and ICRAC, independent of Ca2+/CaM. Hence, the role of H2 residues in Ca2+/CaM-mediated SCDI cannot be precisely evaluated. In contrast, the H1 site controls exclusively Ca2+/CaM binding and subsequently SCDI, but not Orai1 activation. V375A but not V375W substitution eliminated SCDI of ICRAC caused by Ca2+/CaM, proving a direct role of STIM1 in coordinating SCDI. CONCLUSION: Taken together, we propose a mechanistic model, wherein binding of Ca2+/CaM to STIM1 hydrophobic anchor residues, H1 and H2, triggers SCDI by disrupting the functional interaction between STIM1 and Orai1. Our findings reveal how STIM1, Orai1, and Ca2+/CaM are functionally coordinated to control ICRAC.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiologia , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/fisiologia , Sistemas CRISPR-Cas , Canais de Cálcio/genética , Sinalização do Cálcio , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/metabolismo , Modelos Químicos , Modelos Moleculares , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/química , Proteína ORAI1/genética , Ligação Proteica , Domínios Proteicos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Regulação para Cima
4.
Int J Mol Sci ; 21(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764353

RESUMO

Calcium ions regulate a wide array of physiological functions including cell differentiation, proliferation, muscle contraction, neurotransmission, and fertilization. The endoplasmic reticulum (ER) is the major intracellular Ca2+ store and cellular events that induce ER store depletion (e.g., activation of inositol 1,4,5-triphosphate (IP3) receptors) trigger a refilling process known as store-operated calcium entry (SOCE). It requires the intricate interaction between the Ca2+ sensing stromal interaction molecules (STIM) located in the ER membrane and the channel forming Orai proteins in the plasma membrane (PM). The resulting active STIM/Orai complexes form highly selective Ca2+ channels that facilitate a measurable Ca2+ influx into the cytosol followed by successive refilling of the ER by the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). STIM and Orai have attracted significant therapeutic interest, as enhanced SOCE has been associated with several cancers, and mutations in STIM and Orai have been linked to immunodeficiency, autoimmune, and muscular diseases. 2-Aminoethyl diphenylborinate (2-APB) is a known modulator and depending on its concentration can inhibit or enhance SOCE. We have synthesized several novel derivatives of 2-APB, introducing halogen and other small substituents systematically on each position of one of the phenyl rings. Using a fluorometric imaging plate reader (FLIPR) Tetra-based calcium imaging assay we have studied how these structural changes of 2-APB affect the SOCE modulation activity at different compound concentrations in MDA-MB-231 breast cancer cells. We have discovered 2-APB derivatives that block SOCE at low concentrations, at which 2-APB usually enhances SOCE.


Assuntos
Compostos de Boro/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Molécula 1 de Interação Estromal/genética , Moléculas de Interação Estromal/genética , Animais , Compostos de Boro/síntese química , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteína ORAI1/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Molécula 1 de Interação Estromal/antagonistas & inibidores , Moléculas de Interação Estromal/antagonistas & inibidores
5.
Viruses ; 15(7)2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37515120

RESUMO

As the COVID-19 pandemic progresses, new variants of SARS-CoV-2 continue to emerge. This underscores the need to develop optimized tools to study such variants, along with new coronaviruses that may arise in the future. Such tools will also be instrumental in the development of new antiviral drugs. Here, we introduce microscale thermophoresis (MST) as a reliable and versatile tool for coronavirus research, which we demonstrate through three different applications described in this report: (1) binding of the SARS-CoV-2 spike receptor binding domain (RBD) to peptides as a strategy to prevent virus entry, (2) binding of the RBD to the viral receptor ACE2, and (3) binding of the RBD to ACE2 in complex with the amino acid transporter SLC6A20/SIT1 or its allelic variant rs61731475 (p.Ile529Val). Our results demonstrate that MST is a highly precise approach to studying protein-protein and/or protein-ligand interactions in coronavirus research, making it an ideal tool for studying viral variants and developing antiviral agents. Moreover, as shown in our results, a unique advantage of the MST assay over other available binding assays is the ability to measure interactions with membrane proteins in their near-native plasma membrane environment.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Sítios de Ligação , Enzima de Conversão de Angiotensina 2/metabolismo , Pandemias , Ligação Proteica , Antivirais/farmacologia , Antivirais/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
6.
Sci Total Environ ; 836: 155445, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35490806

RESUMO

Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Animais , Antineoplásicos/química , Organismos Aquáticos/metabolismo , Produtos Biológicos/química , Descoberta de Drogas , Ecossistema
7.
Cell Calcium ; 105: 102616, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35792401

RESUMO

In humans, there are three paralogs of the Orai Ca2+ channel that form the core of the store-operated calcium entry (SOCE) machinery. While the STIM-mediated gating mechanism of Orai channels is still under active investigation, several artificial and natural variants are known to cause constitutive activity of the human Orai1 channel. Surprisingly, little is known about the conservation of the gating checkpoints among the different human Orai paralogs and orthologs in other species. In our work, we show that the mutation corresponding to the activating mutation H134A in transmembrane helix 2 (TM2) of human Orai1 also activates Orai2 and Orai3, likely via a similar mechanism. However, this cross-paralog conservation does not apply to the "ANSGA" nexus mutations in TM4 of human Orai1, which is reported to mimic the STIM1-activated state of the channel. In investigating the mechanistic background of these differences, we identified two positions, H171 and F246 in human Orai1, that are not conserved among paralogs and that seem to be crucial for the channel activation triggered by the "ANSGA" mutations in Orai1. However, mutations of the same residues still allow gating of Orai1 by STIM1, suggesting that the ANSGA mutant of Orai1 may not be a surrogate for the STIM1-activated state of the Orai1 channel. Our results shed new light on these important gating checkpoints and show that the gating mechanism of Orai channels is affected by multiple factors that are not necessarily conserved among orai homologs, such as the TM4-TM3 coupling.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Mutação/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
8.
Mol Oncol ; 15(10): 2782-2800, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34003553

RESUMO

Oncogenic KRAS mutations develop unique metabolic dependencies on nutrients to support tumor metabolism and cell proliferation. In particular, KRAS mutant cancer cells exploit amino acids (AAs) such as glutamine and leucine, to accelerate energy metabolism, redox balance through glutathione synthesis and macromolecule biosynthesis. However, the identities of the amino acid transporters (AATs) that are prominently upregulated in KRAS mutant cancer cells, and the mechanism regulating their expression have not yet been systematically investigated. Here, we report that the majority of the KRAS mutant colorectal cancer (CRC) cells upregulate selected AATs (SLC7A5/LAT1, SLC38A2/SNAT2, and SLC1A5/ASCT2), which correlates with enhanced uptake of AAs such as glutamine and leucine. Consistently, knockdown of oncogenic KRAS downregulated the expression of AATs, thereby decreasing the levels of amino acids taken up by CRC cells. Moreover, overexpression of mutant KRAS upregulated the expression of AATs (SLC7A5/LAT1, SLC38A2/SNAT2, and SLC1A5/ASCT2) in KRAS wild-type CRC cells and mouse embryonic fibroblasts. In addition, we show that the YAP1 (Yes-associated protein 1) transcriptional coactivator accounts for increased expression of AATs and mTOR activation in KRAS mutant CRC cells. Specific knockdown of AATs by shRNAs or pharmacological blockage of AATs effectively inhibited AA uptake, mTOR activation, and cell proliferation. Collectively, we conclude that oncogenic KRAS mutations enhance the expression of AATs via the hippo effector YAP1, leading to mTOR activation and CRC cell proliferation.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Fibroblastos/metabolismo , Via de Sinalização Hippo , Humanos , Camundongos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas de Sinalização YAP
9.
Anticancer Agents Med Chem ; 20(11): 1300-1310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31642415

RESUMO

Breast cancer is the second most common cancer that causes death among women worldwide. Incidence of breast cancer is increasing worldwide, and the age at which breast cancer develops has shifted from 50- 70 years to 30-40 years. Chemotherapy is the most commonly used effective treatment strategy to combat breast cancer. However, one of the major drawbacks is low selective site-specificity and the consequent toxic insult to normal healthy cells. The nanocarrier system is consistently utilised to minimise the various limitations involved in the conventional treatment of breast cancer. The nanocarrier based targeted drug delivery system provides better bioavailability, prolonged circulation with an effective accumulation of drugs at the tumour site either by active or passive drug targeting. Active targeting has been achieved by receptor/protein anchoring and externally guided magnetic nanocarriers, whereas passive targeting accomplished by employing the access to the tunnel via leaky tumour vasculature, utilising the tumour microenvironment, because the nanocarrier systems can reduce the toxicity to normal cells. As of now a few nanocarrier systems have been approved by FDA, and various nanoformulations are in the pipeline at the preclinical and clinical development for targeting breast cancer; among them, polymeric micelles, microemulsions, magnetic microemulsions, liposomes, dendrimers, carbon nanotubes, and magnetic Nanoparticles (NPs) are the most common. The current review highlights the active and passive targeting potential of nanocarriers in breast cancer and discusses their role in targeting breast cancer without affecting normal healthy cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Nanopartículas/química , Animais , Antineoplásicos/química , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Microambiente Tumoral/efeitos dos fármacos
10.
Eur J Pharm Sci ; 116: 15-25, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-28987538

RESUMO

Targeted delivery of anticancer agents is poised to improve cancer therapy, for which polymers can serve as targeting ligands or nanocarriers for chemotherapeutic agents. In this study, we have developed and evaluated the efficacy of a camptothecin (CPT)-loaded polymer stabilized nanoemulsion (PSNE) for the passive targeted delivery to breast cancer. Based on the pseudo-ternary phase diagrams, PSNEs were developed using capmul MCM:poloxamer 407 (4:1), solutol HS 15:simulsol P23 (1:2) and water. CPT polymer mixture was developed by solvent evaporation technique. The PSNEs were characterized for droplet size distribution, plasma protein adsorption, drug release, in-vivo targeting potential, hemolytic potential, cytotoxicity, genotoxicity, in-vivo biodistribution and CPT lactone ring stability. The developed PSNEs showed uniform droplet distribution, extended drug release (76.59±6.12% at 24h), acceptable hemolytic potential, significant cytotoxicity (IC50=176±4.3ng/mL) and genotoxicity against MCF-7 cancer cells but low DNA damage potential in human peripheral blood lymphocytes. The efficiency of PSNEs for the targeted delivery of CPT into the tumour regions was documented in 4T1-breast tumour xenografted BALB/c mice. In-vivo biodistribution study shows that 7105.84±568.46ng/g of CPT was passively targeted from PSNE to breast cancer tissue. About 80% of the lactone form was stable for 24h. Taken together, our study provides a promising strategy for developing PSNE-targeted drug delivery system for the breast cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/química , Neoplasias da Mama/tratamento farmacológico , Camptotecina/química , Nanopartículas/química , Poloxâmero/química , Animais , Antineoplásicos Fitogênicos/farmacologia , Camptotecina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Emulsões , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Propriedades de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA