Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158109

RESUMO

Traumatic brain injury (TBI) can cause physical, cognitive, social, and behavioral changes that can lead to permanent disability or death. After primary brain injury, translocated free zinc can accumulate in neurons and lead to secondary events such as oxidative stress, inflammation, edema, swelling, and cognitive impairment. Under pathological conditions, such as ischemia and TBI, excessive zinc release, and accumulation occurs in neurons. Based on previous research, it hypothesized that calcium as well as zinc would be influx into the TRPC5 channel. Therefore, we hypothesized that the suppression of TRPC5 would prevent neuronal cell death by reducing the influx of zinc and calcium. To test our hypothesis, we used a TBI animal model. After the TBI, we immediately injected NU6027 (1 mg/kg, intraperitoneal), TRPC5 inhibitor, and then sacrificed animals 24 h later. We conducted Fluoro-Jade B (FJB) staining to confirm the presence of degenerating neurons in the hippocampal cornus ammonis 3 (CA3). After the TBI, the degenerating neuronal cell count was decreased in the NU6027-treated group compared with the vehicle-treated group. Our findings suggest that the suppression of TRPC5 can open a new therapeutic window for a reduction of the neuronal death that may occur after TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Morte Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Compostos Nitrosos/farmacologia , Pirimidinas/farmacologia , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Contagem de Células , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Neurônios/patologia , Neurônios/fisiologia , Compostos Nitrosos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPC/antagonistas & inibidores , Zinco/metabolismo
2.
Int J Mol Sci ; 21(12)2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32545865

RESUMO

Acidosis in the brain plays an important role in neuronal injury and is a common feature of several neurological diseases. It has been reported that the sodium-hydrogen exchanger-1 (NHE-1) is a key mediator of acidosis-induced neuronal injury. It modulates the concentration of intra- and extra-cellular sodium and hydrogen ions. During the ischemic state, excessive sodium ions enter neurons and inappropriately activate the sodium-calcium exchanger (NCX). Zinc can also enter neurons through voltage-gated calcium channels and NCX. Here, we tested the hypothesis that zinc enters the intracellular space through NCX and the subsequent zinc accumulation induces neuronal cell death after global cerebral ischemia (GCI). Thus, we conducted the present study to confirm whether inhibition of NHE-1 by amiloride attenuates zinc accumulation and subsequent hippocampus neuronal death following GCI. Mice were subjected to GCI by bilateral common carotid artery (BCCA) occlusion for 30 min, followed by restoration of blood flow and resuscitation. Amiloride (10 mg/kg, intraperitoneally (i.p.)) was immediately injected, which reduced zinc accumulation and neuronal death after GCI. Therefore, the present study demonstrates that amiloride attenuates GCI-induced neuronal injury, likely via the prevention of intracellular zinc accumulation. Consequently, we suggest that amiloride may have a high therapeutic potential for the prevention of GCI-induced neuronal death.


Assuntos
Acidose/prevenção & controle , Amilorida/administração & dosagem , Isquemia Encefálica/tratamento farmacológico , Bloqueadores do Canal de Sódio Epitelial/administração & dosagem , Hipocampo/metabolismo , Zinco/metabolismo , Acidose/etiologia , Acidose/metabolismo , Amilorida/farmacologia , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/metabolismo , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Hipocampo/efeitos dos fármacos , Injeções Intraperitoneais , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos
3.
Int J Mol Sci ; 21(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114331

RESUMO

Transient receptor potential melastatin 7 (TRPM7) is an ion channel that mediates monovalent cations out of cells, as well as the entry of divalent cations, such as zinc, magnesium, and calcium, into the cell. It has been reported that inhibitors of TRPM7 are neuroprotective in various neurological diseases. Previous studies in our lab suggested that seizure-induced neuronal death may be caused by the excessive release of vesicular zinc and the subsequent accumulation of zinc in the neurons. However, no studies have evaluated the effects of carvacrol and 2-aminoethoxydiphenyl borate (2-APB), both inhibitors of TRPM7, on the accumulation of intracellular zinc in dying neurons following seizure. Here, we investigated the therapeutic efficacy of carvacrol and 2-APB against pilocarpine-induced seizure. Carvacrol (50 mg/kg) was injected once per day for 3 or 7 days after seizure. 2-APB (2 mg/kg) was also injected once per day for 3 days after seizure. We found that inhibitors of TRPM7 reduced seizure-induced TRPM7 overexpression, intracellular zinc accumulation, and reactive oxygen species production. Moreover, there was a suppression of oxidative stress, glial activation, and the blood-brain barrier breakdown. In addition, inhibitors of TRPM7 remarkably decreased apoptotic neuron death following seizure. Taken together, the present study demonstrates that TRPM7-mediated zinc translocation is involved in neuron death after seizure. The present study suggests that inhibitors of TRPM7 may have high therapeutic potential to reduce seizure-induced neuron death.


Assuntos
Compostos de Boro/administração & dosagem , Cimenos/administração & dosagem , Neurônios/metabolismo , Convulsões/prevenção & controle , Canais de Cátion TRPM/metabolismo , Zinco/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Compostos de Boro/farmacologia , Cimenos/farmacologia , Modelos Animais de Doenças , Masculino , Neurônios/efeitos dos fármacos , Pilocarpina/efeitos adversos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Resultado do Tratamento
4.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825703

RESUMO

A variety of pathogenic mechanisms, such as cytoplasmic calcium/zinc influx, reactive oxygen species production, and ionic imbalance, have been suggested to play a role in cerebral ischemia induced neurodegeneration. During the ischemic state that occurs after stroke or heart attack, it is observed that vesicular zinc can be released into the synaptic cleft, and then translocated into the cytoplasm via various cation channels. Transient receptor potential melastatin 2 (TRPM2) is highly distributed in the central nervous system and has high sensitivity to oxidative damage. Several previous studies have shown that TRPM2 channel activation contributes to neuroinflammation and neurodegeneration cascades. Therefore, we examined whether anti-oxidant treatment, such as with N-acetyl-l-cysteine (NAC), provides neuroprotection via regulation of TRPM2, following global cerebral ischemia (GCI). Experimental animals were then immediately injected with NAC (150 mg/kg/day) for 3 and 7 days, before sacrifice. We demonstrated that NAC administration reduced activation of GCI-induced neuronal death cascades, such as lipid peroxidation, microglia and astroglia activation, free zinc accumulation, and TRPM2 over-activation. Therefore, modulation of the TRPM2 channel can be a potential therapeutic target to prevent ischemia-induced neuronal death.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Isquemia Encefálica/tratamento farmacológico , Neurônios/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos , Canais de Cátion TRPM/antagonistas & inibidores , Zinco/metabolismo
5.
Int J Mol Sci ; 19(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304850

RESUMO

Apocynin, also known as acetovanillone, is a natural organic compound structurally related to vanillin. Apocynin is known to be an inhibitor of NADPH (Nicotinamide adenine dinucleotide phosphate) oxidase activity and is highly effective in suppressing the production of superoxide. The neuroprotective effects of apocynin have been investigated in numerous brain injury settings, such as stroke, traumatic brain injury (TBI), and epilepsy. Our lab has demonstrated that TBI or seizure-induced oxidative injury and neuronal death were reduced by apocynin treatment. Several studies have also demonstrated that neuroblast production is transiently increased in the hippocampus after seizures. Here, we provide evidence confirming the hypothesis that long-term treatment with apocynin may enhance newly generated hippocampal neuronal survival by reduction of superoxide production after seizures. A seizure was induced by pilocarpine [(25 mg/kg intraperitoneal (i.p.)] injection. Apocynin was continuously injected for 4 weeks after seizures (once per day) into the intraperitoneal space. We evaluated neuronal nuclear antigen (NeuN), bromodeoxyuridine (BrdU), and doublecortin (DCX) immunostaining to determine whether treatment with apocynin increased neuronal survival and neurogenesis in the hippocampus after seizures. The present study indicates that long-term treatment of apocynin increased the number of NeuN⁺ and DCX⁺ cells in the hippocampus after seizures. Therefore, this study suggests that apocynin treatment increased neuronal survival and neuroblast production by reduction of hippocampal oxidative injury after seizures.


Assuntos
Acetofenonas/farmacologia , Hipocampo/metabolismo , NADPH Oxidases/metabolismo , Neurogênese , Convulsões/metabolismo , Animais , Antígenos Nucleares/metabolismo , Biomarcadores , Lesões Encefálicas/complicações , Proteína Duplacortina , Hipocampo/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Convulsões/tratamento farmacológico , Convulsões/patologia , Fatores de Tempo
6.
ACS Nano ; 14(4): 4523-4535, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32191436

RESUMO

We herein developed an iontophoretic transdermal drug delivery system for the effective delivery of electrically mobile drug nanocarriers (DNs). Our system consists of a portable and disposable reverse electrodialysis (RED) battery that generates electric power for iontophoresis through the ionic exchange. In addition, in order to provide a drug reservoir to the RED-driven iontophoretic system, an electroconductive hydrogel composed of polypyrrole-incorporated poly(vinyl alcohol) (PYP) was used. The PYP hydrogel facilitated electron transfer from the RED battery and accelerated the mobility of electrically mobile DNs released from the PYP hydrogel. In this study, we showed that fluconazole- or rosiglitazone-loaded DNs could be functionalized with charge-inducing agents, and DNs with charge modification resulted in facilitated transdermal transport via repulsive RED-driven iontophoresis. In addition, topical application and RED-driven iontophoresis of rosiglitazone-loaded DNs resulted in an effective antiobese condition displaying decreased bodyweight, reduced glucose level, and increased conversion of white adipose tissues to brown adipose tissues in vivo. Consequently, we highlight that this transdermal drug delivery platform would be extensively utilized for delivering diverse therapeutic agents in a noninvasive way.


Assuntos
Iontoforese , Polímeros , Sistemas de Liberação de Medicamentos , Hidrogéis/metabolismo , Polímeros/metabolismo , Pirróis , Pele/metabolismo , Absorção Cutânea
7.
Front Neurosci ; 14: 568813, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33177978

RESUMO

Epilepsy is one of the most common and severe brain diseases. The exact cause of epilepsy is unclear. Epilepsy often occurs following brain damage, such as traumatic brain injury (TBI) and ischemia. Cerebrolysin is a porcine brain peptide that is a unique neurotropic and neuroprotective agent. Cerebrolysin has been reported to increase neuroprotective effects after TBI, ischemia, and other CNS diseases. However, the effects of cerebrolysin on seizures are not known. Therefore, this study aimed to investigate the effects of neuropeptide cerebrolysin on neuronal death in the hippocampus after a seizure. To confirm the effects of cerebrolysin, we used a pilocarpine-induced seizure animal model. Cerebrolysin (2.5 ml/kg, i.p., once per day for 7 days) was immediately injected after a seizure induction. After 1 week, we obtained brain tissues and performed staining to histologically evaluate the potentially protective effects of cerebrolysin on seizure-induced neuronal death in the hippocampus. We found that cerebrolysin decreased hippocampal neuronal death after a seizure. In addition, an increase in brain-derived neurotrophic factor (BDNF) was confirmed through Western blot analysis to further support our hypothesis. Therefore, the present study suggests that the administration of cerebrolysin can be a useful therapeutic tool for preventing neuronal death after a seizure.

8.
Cells ; 8(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052436

RESUMO

Our previous studies demonstrated that some degree of neuronal death is caused by hypoglycemia, but a subsequent and more severe wave of neuronal cell death occurs due to glucose reperfusion, which results from the rapid restoration of low blood glucose levels. Mitochondrial dysfunction caused by hypoglycemia leads to increased levels of pyruvate dehydrogenase kinase (PDK) and suppresses the formation of ATP by inhibiting pyruvate dehydrogenase (PDH) activation, which can convert pyruvate into acetyl-coenzyme A (acetyl-CoA). Sodium dichloroacetate (DCA) is a PDK inhibitor and activates PDH, the gatekeeper of glucose oxidation. However, no studies about the effect of DCA on hypoglycemia have been published. In the present study, we hypothesized that DCA treatment could reduce neuronal death through improvement of glycolysis and prevention of reactive oxygen species production after hypoglycemia. To test this, we used an animal model of insulin-induced hypoglycemia and injected DCA (100 mg/kg, i.v., two days) following hypoglycemic insult. Histological evaluation was performed one week after hypoglycemia. DCA treatment reduced hypoglycemia-induced oxidative stress, microglial activation, blood-brain barrier disruption, and neuronal death compared to the vehicle-treated hypoglycemia group. Therefore, our findings suggest that DCA may have the therapeutic potential to reduce hippocampal neuronal death after hypoglycemia.


Assuntos
Ácido Dicloroacético/farmacologia , Hipoglicemia/patologia , Mitocôndrias/patologia , Neurônios/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Morte Celular/efeitos dos fármacos , Ácido Dicloroacético/administração & dosagem , Ativação Enzimática/efeitos dos fármacos , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Ratos Sprague-Dawley
9.
Environ Pollut ; 238: 140-149, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29554562

RESUMO

Soil contamination due to atmospheric deposition of metals originating from smelters is a global environmental problem. A common problem associated with this contamination is the discrimination between anthropic and natural contributions to soil metal concentrations: In this context, we investigated the characteristics of soil contamination in the surrounding area of a world class smelter. We attempted to combine several approaches in order to identify sources of metals in soils and to examine contamination characteristics, such as pollution level, range, and spatial distribution. Soil samples were collected at 100 sites during a field survey and total concentrations of As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, and Zn were analyzed. We conducted a multivariate statistical analysis, and also examined the spatial distribution by 1) identifying the horizontal variation of metals according to particular wind directions and distance from the smelter and 2) drawing a distribution map by means of a GIS tool. As, Cd, Cu, Hg, Pb, and Zn in the soil were found to originate from smelter emissions, and As also originated from other sources such as abandoned mines and waste landfill. Among anthropogenic metals, the horizontal distribution of Cd, Hg, Pb, and Zn according to the downwind direction and distance from the smelter showed a typical feature of atmospheric deposition (regression model: y = y0 + αe-ßx). Lithogenic Fe was used as an indicator, and it revealed the continuous input and accumulation of these four elements in the surrounding soils. Our approach was effective in clearly identifying the sources of metals and analyzing their contamination characteristics. We believe this study will provide useful information to future studies on soil pollution by metals around smelters.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Agricultura , China , Mercúrio/análise , Metalurgia , Mineração , Análise Multivariada , República da Coreia , Zinco/análise
10.
Cells ; 7(12)2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30486272

RESUMO

Over the last two decades, evidence supporting the concept of zinc-induced neuronal death has been introduced, and several intervention strategies have been investigated. Vesicular zinc is released into the synaptic cleft, where it then translocates to the cytoplasm, which leads to the production of reactive oxygen species and neurodegeneration. Carvacrol inhibits transient receptor potential melastatin 7 (TRPM7), which regulates the homeostasis of extracellular metal ions, such as calcium and zinc. In the present study, we test whether carvacrol displays any neuroprotective effects after global cerebral ischemia (GCI), via a blockade of zinc influx. To test our hypothesis, we used eight-week-old male Sprague⁻Dawley rats, and a GCI model was induced by bilateral common carotid artery occlusion (CCAO), accompanied by blood withdrawal from the femoral artery. Ischemic duration was defined as a seven-minute electroencephalographic (EEG) isoelectric period. Carvacrol (50 mg/kg) was injected into the intraperitoneal space once per day for three days after the onset of GCI. The present study found that administration of carvacrol significantly decreased the number of degenerating neurons, microglial activation, oxidative damage, and zinc translocation after GCI, via downregulation of TRPM7 channels. These findings suggest that carvacrol, a TRPM7 inhibitor, may have therapeutic potential after GCI by reducing intracellular zinc translocation.

11.
Food Chem ; 244: 349-358, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29120792

RESUMO

Evaluation of functional and bioactive compounds of Asparagus officinalis L. growing in conventional and organic greenhouse and conventional open - field farming was the aim of this research. Polyphenols in cladodes grown conventionally were higher than organic. Flavonoids and carotenoids were the highest in cladodes in open field. Organic spears were richer in total phenolics (+6.9% and +19.1%) and flavonoids (+4.7% and 16.8%) and showed higher in vitro averages of antioxidant activities by three radical scavenging assays (+12.5% and+ 22.2%) than conventional. Partial differentiation of organically and conventionally grown samples was proved by multivariate statistics. The binding properties of polyphenols to HSA were relatively high in comparison with other plants. A strong positive correlation of binding properties and bioactivity of asparagus was estimated. All new found aspects for the first time lead to recommendation of inclusion of all investigated asparagus plants into the human diet in a wider scale.


Assuntos
Agricultura/métodos , Asparagus/química , Asparagus/crescimento & desenvolvimento , Flavonoides/análise , Fenóis/análise , Antioxidantes/análise , Carotenoides/análise , Humanos , Agricultura Orgânica/métodos , Polifenóis/análise , Polifenóis/metabolismo , Albumina Sérica Humana/metabolismo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA