Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(35): 21170-21174, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817559

RESUMO

Fe-based superconductors exhibit a diverse interplay between charge, orbital, and magnetic ordering. Variations in atomic geometry affect electron hopping between Fe atoms and the Fermi surface topology, influencing magnetic frustration and the pairing strength through changes of orbital overlap and occupancies. Here, we experimentally demonstrate a systematic approach to realize superconductivity without chemical doping in BaFe2As2, employing geometric design within an epitaxial heterostructure. We control both tetragonality and orthorhombicity in BaFe2As2 through superlattice engineering, which we experimentally find to induce superconductivity when the As-Fe-As bond angle approaches that in a regular tetrahedron. This approach to superlattice design could lead to insights into low-dimensional superconductivity in Fe-based superconductors.

2.
Nano Lett ; 22(2): 726-732, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35005964

RESUMO

Photolithography and electron-beam lithography are the most common methods for making nanoscale devices from semiconductors. While these methods are robust for bulk materials, they disturb the electrical properties of two-dimensional (2D) materials, which are highly sensitive to chemicals used during lithography processes. Here, we report a resist-free lithography method, based on direct laser patterning and resist-free electrode transfer, which avoids unintentional modification to the 2D materials throughout the process. We successfully fabricate large arrays of field-effect transistors using MoS2 and WSe2 monolayers, the performance of which reflects the properties of the pristine materials. Furthermore, using these pristine devices as a reference, we reveal that among the various stages of a conventional lithography process, exposure to a solvent like acetone changes the electrical conductivity of MoS2 the most. This new approach will enable a rational design of reproducible processes for making large-scale integrated circuits based on 2D materials and other surface-sensitive materials.

3.
Nano Lett ; 21(17): 7291-7297, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34415174

RESUMO

Flat optics aims for the on-chip miniaturization of optical systems for high-speed and low-power operation, with integration of thin and lightweight components. Here, we present atomically thin yet optically isotropic films realized by using three-dimensional (3D) topographic reconstruction of anisotropic two-dimensional (2D) films to balance the out-of-plane and in-plane optical responses on the subwavelength scale. We achieve this by conformal growth of monolayer transition metal dichalcogenide (TMD) films on nanodome-structured substrates. The resulting films show an order-of-magnitude increase in the out-of-plane susceptibility for enhanced angular performance, displaying polarization isotropy in the off-axis absorption, as well as improved photoluminescence emission profiles, compared to their flat-film counterparts. We further show that such 3D geometric programming of optical properties is applicable to different TMD materials, offering spectral generalization over for the entire visible range. Our approach presents a powerful platform for advancing the development of atomically thin flat optics with custom-designed light-matter interactions.


Assuntos
Dispositivos Ópticos
4.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800907

RESUMO

BACKGROUND: In the present study, we examined superoxide-mediated excitatory nociceptive transmission on at-level neuropathic pain following spinal thoracic 10 contusion injury (SCI) in male Sprague Dawley rats. METHODS: Mechanical sensitivity at body trunk, neuronal firing activity, and expression of superoxide marker/ionotropic glutamate receptors (iGluRs)/CamKII were measured in the T7/8 dorsal horn, respectively. RESULTS: Topical treatment of superoxide donor t-BOOH (0.4 mg/kg) increased neuronal firing rates and pCamKII expression in the naïve group, whereas superoxide scavenger Tempol (1 mg/kg) and non-specific ROS scavenger PBN (3 mg/kg) decreased firing rates in the SCI group (* p < 0.05). SCI showed increases of iGluRs-mediated neuronal firing rates and pCamKII expression (* p < 0.05); however, t-BOOH treatment did not show significant changes in the naïve group. The mechanical sensitivity at the body trunk in the SCI group (6.2 ± 0.5) was attenuated by CamKII inhibitor KN-93 (50 µg, 3.9 ± 0.4) or Tempol (1 mg, 4 ± 0.4) treatment (* p < 0.05). In addition, the level of superoxide marker Dhet showed significant increase in SCI rats compared to the sham group (11.7 ± 1.7 vs. 6.6 ± 1.5, * p < 0.05). CONCLUSIONS: Superoxide and the pCamKII pathway contribute to chronic at-level neuropathic pain without involvement of iGluRs following SCI.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Hiperalgesia/tratamento farmacológico , Proteínas do Tecido Nervoso/fisiologia , Neuralgia/tratamento farmacológico , Nociceptividade/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Superóxidos/metabolismo , Animais , Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/biossíntese , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Contusões/fisiopatologia , Óxidos N-Cíclicos/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Hiperalgesia/etiologia , Masculino , Modelos Animais , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neuralgia/etiologia , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores Ionotrópicos de Glutamato/efeitos dos fármacos , Marcadores de Spin , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Traumatismos da Medula Espinal/fisiopatologia , Sulfonamidas/farmacologia , Transmissão Sináptica
5.
Cell Mol Neurobiol ; 40(6): 861-878, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31955281

RESUMO

Spinal cord injury (SCI) causes maladaptive changes to nociceptive synaptic circuits within the injured spinal cord. Changes also occur at remote regions including the brain stem, limbic system, cortex, and dorsal root ganglia. These maladaptive nociceptive synaptic circuits frequently cause neuronal hyperexcitability in the entire nervous system and enhance nociceptive transmission, resulting in chronic central neuropathic pain following SCI. The underlying mechanism of chronic neuropathic pain depends on the neuroanatomical structures and electrochemical communication between pre- and postsynaptic neuronal membranes, and propagation of synaptic transmission in the ascending pain pathways. In the nervous system, neurons are the only cell type that transmits nociceptive signals from peripheral receptors to supraspinal systems due to their neuroanatomical and electrophysiological properties. However, the entire range of nociceptive signaling is not mediated by any single neuron. Current literature describes regional studies of electrophysiological or neurochemical mechanisms for enhanced nociceptive transmission post-SCI, but few studies report the electrophysiological, neurochemical, and neuroanatomical changes across the entire nervous system following a regional SCI. We, along with others, have continuously described the enhanced nociceptive transmission in the spinal dorsal horn, brain stem, thalamus, and cortex in SCI-induced chronic central neuropathic pain condition, respectively. Thus, this review summarizes the current understanding of SCI-induced neuronal hyperexcitability and maladaptive nociceptive transmission in the entire nervous system that contributes to chronic central neuropathic pain.


Assuntos
Dor Crônica/etiologia , Dor Crônica/fisiopatologia , Neuralgia/etiologia , Neuralgia/fisiopatologia , Neurônios/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia , Animais , Humanos , Inibição Neural/fisiologia , Especificidade de Órgãos
6.
Nano Lett ; 18(10): 6347-6352, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30149722

RESUMO

Atomic layer controlled growth of epitaxial thin films of unconventional superconductors opens the opportunity to discover novel high temperature superconductors. For instance, the interfacial atomic configurations may play an important role in superconducting behavior of monolayer FeSe on SrTiO3 and other Fe-based superconducting thin films. Here, we demonstrate a selective control of the atomic configurations in Co-doped BaFe2As2 epitaxial thin films and its strong influence on superconducting transition temperatures by manipulating surface termination of (001) SrTiO3 substrates. In a combination of first-principles calculations and high-resolution scanning transmission electron microscopy imaging, we show that Co-doped BaFe2As2 on TiO2-terminated SrTiO3 is a tetragonal structure with an atomically sharp interface and with an initial Ba layer. In contrast, Co-doped BaFe2As2 on SrO-terminated SrTiO3 has a monoclinic distortion and a BaFeO3- x initial layer. Furthermore, the superconducting transition temperature of Co-doped BaFe2As2 ultrathin films on TiO2-terminated SrTiO3 is significantly higher than that on SrO-terminated SrTiO3, which we attribute to shaper interfaces with no lattice distortions. This study allows the design of the interfacial atomic configurations and the effects of the interface on superconductivity in Fe-based superconductors.

16.
17.
Steroids ; 208: 109451, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838951

RESUMO

This paper presents the metabolomic distance between normal and obese children. Our PCA results quantitatively explain why girls are more prone to obesity than boys.


Assuntos
Metabolômica , Obesidade , Humanos , Criança , Masculino , Feminino , Obesidade/metabolismo , Análise de Componente Principal , Adolescente , Obesidade Infantil/metabolismo
18.
Bone ; 180: 116999, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38158169

RESUMO

Bone Mineral Density (BMD) is an important parameter in the development of orthopedic fracture-healing methods. A recent article (Inoue, S., et al. Bone. 2023, 177, 116916) investigated the use of higher intensity ultrasound to promote murine bone formation by measuring BMD levels. In this work, we present the numerical values of BMD, which show sigmoid kinetics and hyperbolic asymptotic increase with the application of higher intensity ultrasound. Our analysis may provide a foundation for the understanding and application of ultrasound to the human body.


Assuntos
Densidade Óssea , Calcificação Fisiológica , Humanos , Camundongos , Animais , Ultrassonografia , Osso e Ossos/diagnóstico por imagem , Osteogênese
19.
J Agric Food Chem ; 71(49): 19900-19902, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38039325

RESUMO

The thermal properties of proteins are very important in industrial, agricultural, and food chemistry. A recent article (Li, B., et al. J. Agric. Food Chem. 2023, 71, 5614-5629) examines the thermal denaturation of enzymes TrSOX and BSOX by measuring the enthalpy change and melting temperature in the denaturation. In this work, we report the numerical values of entropy in the denaturation of proteins and show that both proteins TrSOX and BSOX exhibit enthalpy-entropy compensation in thermal denaturation, which results in a limited variation of melting temperature in both proteins. Our analysis may serve to improve our understanding of thermal properties in proteins in food chemistry.

20.
Materials (Basel) ; 16(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37959629

RESUMO

We obtain the through-thickness elastic stiffness coefficient (C33) in nominal 9 nm and 60 nm BaFe2As2 (Ba-122) thin films by using picosecond ultrasonics. Particularly, we reveal the increase in elastic stiffness as film thickness decreases from bulk value down to 9 nm, which we attribute to the increase in intrinsic strain near the film-substrate interface. Our density functional theory (DFT) calculations reproduce the observed acoustic oscillation frequencies well. In addition, temperature dependence of longitudinal acoustic (LA) phonon mode frequency for 9 nm Ba-122 thin film is reported. The frequency change is attributed to the change in Ba-122 orthorhombicity (a-b)/(a+b). This conclusion can be corroborated by our previous ultrafast ellipticity measurements in 9 nm Ba-122 thin film, which exhibit strong temperature dependence and indicate the structural phase transition temperature Ts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA