RESUMO
Sodium butyrate (NaB) is one of the short-chain fatty acids and is notably produced in large amounts from dietary fiber in the gut. Recent evidence suggests that NaB induces cell proliferation and apoptosis. Skeletal muscle is rich in plenty of mitochondrial. However, it is unclear how NaB acts on host muscle cells and whether it is involved in mitochondria-related functions in myocytes. The present study aimed to investigate the role of NaB treatment on the proliferation, apoptosis, and mitophagy of bovine skeletal muscle satellite cells (BSCs). The results showed that NaB inhibited proliferation, promoted apoptosis of BSCs, and promoted mitophagy in a time- and dose-dependent manner in BSCs. In addition, 1 mM NaB increased the mitochondrial ROS level, decreased the mitochondrial membrane potential (MMP), increased the number of autophagic vesicles in mitochondria, and increased the mitochondrial DNA (mtDNA) and ATP level. The effects of the mTOR pathway on BSCs were investigated. The results showed that 1 mM NaB inhibited the mRNA and protein expression of mTOR and genes AKT1, FOXO1, and EIF4EBP1 in the mTOR signaling pathway. In contrast, the addition of PP242, an inhibitor of the mTOR signaling pathway also inhibited mRNA and protein expression levels of mTOR, AKT1, FOXO1, and EIF4EBP1 and promoted mitophagy and apoptosis, which were consistent with the effect of NaB treatment. NaB might promote mitophagy and apoptosis in BSCs by inhibiting the mTOR signaling pathway. Our results would expand the knowledge of sodium butyrate on bovine skeletal muscle cell state and mitochondrial function.
Assuntos
Células Satélites de Músculo Esquelético , Bovinos , Animais , Ácido Butírico/farmacologia , Mitofagia , Transdução de Sinais , Serina-Treonina Quinases TOR , DNA Mitocondrial , RNA Mensageiro , Apoptose , MamíferosRESUMO
BACKGROUND: Meiotic recombination is one of the important phenomena contributing to gamete genome diversity. However, except for human and a few model organisms, it is not well studied in livestock, including cattle. RESULTS: To investigate their distributions in the cattle sperm genome, we sequenced 143 single sperms from two Holstein bulls. We mapped meiotic recombination events at high resolution based on phased heterozygous single nucleotide polymorphism (SNP). In the absence of evolutionary selection pressure in fertilization and survival, recombination events in sperm are enriched near distal chromosomal ends, revealing that such a pattern is intrinsic to the molecular mechanism of meiosis. Furthermore, we further validated these findings in single sperms with results derived from sequencing its family trio of diploid genomes and our previous studies of recombination in cattle. CONCLUSIONS: To our knowledge, this is the first large-scale single sperm whole-genome sequencing effort in livestock, which provided useful information for future studies of recombination, genome instability, and male infertility.
Assuntos
Meiose , Recombinação Genética , Animais , Bovinos/genética , Mapeamento Cromossômico , Masculino , Meiose/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , EspermatozoidesRESUMO
Using the CaprineSNP50 data generated by the AGIN consortium, we detected common CNVs in 126 samples from four African indigenous goat breeds. A total of 30 CNVs ranging from 30,237â¯bp to 4,910,757â¯bp were identified. These CNVs were then associated with six growth traits by a linear regression analysis. Three significant associations were identified between two CNVs and two body traits after false discovery rate (FDR) correction (Pâ¯<â¯.05). One of them (CNV27) was significantly associated with both chest width and width of pin bones. It overlaps the SNX29 gene, the Gene Ontology (GO) annotations of which indicate CNV27 could be a potential functional candidate for meat production, health and reproduction traits. To our knowledge, this study is the first CNV-based association test of growth traits using SNP chip data in African meat goats.
Assuntos
Tamanho Corporal/genética , Variações do Número de Cópias de DNA , Cabras/genética , Locos de Características Quantitativas , Animais , Cabras/crescimento & desenvolvimento , Característica Quantitativa Herdável , Seleção ArtificialRESUMO
Copy number variation (CNV) is a major type of genomic structural variation. We investigated their impacts on goat dairy traits using the CaprineSNP50 array. From 120 samples of five dairy goat breeds, we totally identified 42 CNVs ranging from 56,044 bp to 4,337,625 bp. We found significant associations between two CNVs (CNV5 and CNV25) and two milk production traits (mean of milk fat yield and mean of milk protein yield) after false discovery rate (FDR) correction (P < 0.05). CNV5 overlaps the ADAMTS20 gene, which is involved in the differentiation of mammary cell and plays a crucial role in lactogenic activity of bovine mammary epithelial cells. CNV25 overlaps with PAPPA2, which has been found to be associated with bovine reproduction and milk production traits. Our results revealed that CNVs overlapped with ADAMTS20 and PAPPA2 could be involved in goat dairy traits and function as candidate markers for further genetic selection.
Assuntos
Variações do Número de Cópias de DNA , Cabras/genética , Leite , Proteínas ADAMTS/genética , Animais , Indústria de Laticínios , Feminino , Técnicas de Genotipagem , Proteínas do Leite/análise , Reação em Cadeia da Polimerase , Proteína Plasmática A Associada à Gravidez/genéticaRESUMO
OBJECTIVE: Asthma is a chronic immune disease that has become a serious public health problem. The currently available medications are not ideal because of their limitations and side effects; hence, new target proteins and signaling cascades for precise and safe therapy treatment are needed. This work established an ovalbumin-induced asthma rat model and treated it with total flavonoid extract from the Xinjiang chamomile. The proteins that were differentially expressed in the chamomile extract-treated asthmatic rats and the asthma and healthy rat groups were identified using isobaric tagging followed by LC-MS/MS. Kyoto encyclopedia of genes and genomes pathway analysis of the differentially expressed proteins was performed. RESULTS: Pathways involved in purine metabolism, herpes simplex infection, and JNK phosphorylation and activation mediated by activated human TAK1 were enriched, indicating the intrinsic links between the mechanism of asthma development and treatment effects. Furthermore, we constructed a protein-protein interaction network and identified KIF3A as a potential target protein of chamomile extract that affected the Hedgehog signaling pathway. CONCLUSIONS: This study may provide new insights into the pathogenesis of asthma and reveal several proteins and pathways that could be exploited to develop novel treatment approaches.
Assuntos
Asma/metabolismo , Camomila/química , Flavonoides/farmacologia , Proteoma/efeitos dos fármacos , Animais , Proteínas Hedgehog/metabolismo , Cinesinas/metabolismo , Pulmão/química , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Extratos Vegetais/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteômica , Ratos , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: The functional annotation of genomes, including chromatin accessibility and modifications, is important for understanding and effectively utilizing the increased amount of genome sequences reported. However, while such annotation has been well explored in a diverse set of tissues and cell types in human and model organisms, relatively little data are available for livestock genomes, hindering our understanding of complex trait variation, domestication, and adaptive evolution. Here, we present the first complete global landscape of regulatory elements in cattle and explore the dynamics of chromatin states in rumen epithelial cells induced by the rumen developmental regulator-butyrate. RESULTS: We established the first global map of regulatory elements (15 chromatin states) and defined their coordinated activities in cattle, through genome-wide profiling for six histone modifications, RNA polymerase II, CTCF-binding sites, DNA accessibility, DNA methylation, and transcriptome in rumen epithelial primary cells (REPC), rumen tissues, and Madin-Darby bovine kidney epithelial cells (MDBK). We demonstrated that each chromatin state exhibited specific enrichment for sequence ontology, transcription, methylation, trait-associated variants, gene expression-associated variants, selection signatures, and evolutionarily conserved elements, implying distinct biological functions. After butyrate treatments, we observed that the weak enhancers and flanking active transcriptional start sites (TSS) were the most dynamic chromatin states, occurred concomitantly with significant alterations in gene expression and DNA methylation, which was significantly associated with heifer conception rate and stature economic traits. CONCLUSION: Our results demonstrate the crucial role of functional genome annotation for understanding genome regulation, complex trait variation, and adaptive evolution in livestock. Using butyrate to induce the dynamics of the epigenomic landscape, we were able to establish the correlation among nutritional elements, chromatin states, gene activities, and phenotypic outcomes.
Assuntos
Butiratos/administração & dosagem , Bovinos/genética , Cromatina/metabolismo , Genoma , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico , Animais , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Rúmen/efeitos dos fármacos , Rúmen/metabolismoRESUMO
Duplicated sequences are an important source of gene evolution and structural variation within mammalian genomes. Using a read depth approach based on next-generation sequencing, we performed a genome-wide analysis of segmental duplications (SDs) and associated copy number variations (CNVs) in the water buffalo (Bubalus bubalis). By aligning short reads of Olimpia (the reference water buffalo) to the UMD3.1 cattle genome, we identified 1,038 segmental duplications comprising 44.6 Mb (equivalent to ~1.73% of the cattle genome) of the autosomal and X chromosomal sequence in the buffalo genome. We experimentally validated 70.3% (71/101) of these duplications using fluorescent in situ hybridization. We also detected a total of 1,344 CNV regions across 14 additional water buffaloes, amounting to 59.8 Mb of variable sequence or the equivalent of 2.2% of the cattle genome. The CNV regions overlap 1,245 genes that are significantly enriched for specific biological functions including immune response, oxygen transport, sensory system and signal transduction. Additionally, we performed array Comparative Genomic Hybridization (aCGH) experiments using the 14 water buffaloes as test samples and Olimpia as the reference. Using a linear regression model, a high Pearson correlation (r = 0.781) was observed between the log2 ratios between copy number estimates and the log2 ratios of aCGH probes. We further designed Quantitative PCR assays to confirm CNV regions within or near annotated genes and found 74.2% agreement with our CNV predictions. These results confirm sub-chromosome-scale structural rearrangements present in the cattle and water buffalo. The information on genome variation that will be of value for evolutionary and phenotypic studies, and may be useful for selective breeding of both species.
Assuntos
Búfalos/genética , Variações do Número de Cópias de DNA , Duplicações Segmentares Genômicas , Animais , GenomaRESUMO
OBJECTIVE: In this study, the transcriptome profile of cow experiencing miscarriage during peri-implantation was investigated. METHODS: Total transcriptomes were checked by RNA sequencing, and the analyzed by bioinformatics methods, the differentially expressed genes (DEGs) were analysed with hierarchical clustering and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. RESULTS: The results suggested that serum progesterone levels were significantly decreased in cows that miscarried as compared to the pregnant cows at 18, 21, 33, 39, and 51 days after artificial insemination. The RNA sequencing results suggested that 32, 176, 5, 10, and 2 DEGs were identified in the pregnant cows and miscarried cows at 18, 21, 33, 39, and 51 d after artificial insemination. And 15, 101, 1, 2, and 2 DEGs were upregulated, and 17, 74, 4, and 8 DEGs were downregulated in the cows in the pregnant and miscarriage groups, respectively at 18, 21, 33, and 39, but no gene was downregulated at 51 d after artificial insemination. These DEGs were distributed to 13, 20, 3, 6, and 20 pathways, and some pathway essential for pregnancy, such as cell adhesion molecules, tumor necrosis factor signaling pathway and PI3K-Akt signaling pathway. CONCLUSION: This analysis has identified several genes and related pathways crucial for pregnancy and miscarriage in cows, as well as these genes supply molecular markers to predict the miscarriage in cows.
RESUMO
BACKGROUND: Tan sheep is an indigenous Chinese breed well known for its beautiful curly fleece. One prominent breed characteristic of this sheep breed is that the degree of curliness differs markedly between lambs and adults, but the molecular mechanisms regulating the shift are still not well understood. In this study, we identified 49 differentially expressed (DE) microRNAs (miRNAs) between Tan sheep at the two stages through miRNA-seq, and combined the data with that in our earlier Suppression Subtractive Hybridization cDNA (SSH) library study to elucidate the mechanisms underlying curly fleece formation. RESULTS: Thirty-six potential miRNA-mRNA target pairs were identified using computational methods, including 25 DE miRNAs and 10 DE genes involved in the MAPK signaling pathway, steroid biosynthesis and metabolic pathways. With the differential expressions between lambs and adults confirmed by qRT-PCR, some miRNAs were already annotated in the genome, but some were novel miRNAs. Inhibition of KRT83 expression by miR-432 was confirmed by both gene knockdown with siRNA and overexpression, which was consistent with the miRNAs and targets prediction results. CONCLUSION: Our study represents the comprehensive analysis of mRNA and miRNA in Tan sheep and offers detailed insight into the development of curly fleece as well as the potential mechanisms controlling curly hair formation in humans.
Assuntos
Pelo Animal/anatomia & histologia , MicroRNAs/genética , Ovinos/anatomia & histologia , Ovinos/genética , Animais , RNA Mensageiro/genética , Análise de Sequência de RNARESUMO
Butyric acid, a pivotal short-chain fatty acid in rumen digestion, profoundly influences animal digestive and locomotor systems. Extensive research indicates its direct or indirect involvement in the growth and development of muscle and fat cells. However, the impact of butyric acid on the proliferation and differentiation of bovine skeletal muscle satellite cells (SMSCs) remains unclear. This study aimed to elucidate the effects of butyrate on SMSCs proliferation and differentiation. After isolating, SMSCs were subjected to varying concentrations of sodium butyrate (NaB) during the proliferation and differentiation stages. Optimal treatment conditions (1 mM NaB for 2 days) were determined based on proliferative force, cell viability, and mRNA expression of proliferation and differentiation marker genes. Transcriptome sequencing was employed to screen for differential gene expression between 1 mM NaB-treated and untreated groups during SMSCs differentiation. Results indicated that lower NaB concentrations (≤1.0 mM) inhibited proliferation while promoting differentiation and apoptosis after a 2-day treatment. Conversely, higher NaB concentrations (≥2.0 mM) suppressed proliferation and differentiation and induced apoptosis. Transcriptome sequencing revealed differential expression of genes(ND1, ND3, CYTB, COX2, ATP6, MYOZ2, MYOZ3, MYBPC1 and ATP6V0A4,etc.) were associated with SMSCs differentiation and energy metabolism, enriching pathways such as Oxidative phosphorylation, MAPK, and Wnt signaling. These findings offer valuable insights into the molecular mechanisms underlying butyrate regulation of bovine SMSCs proliferation and differentiation, as well as muscle fiber type conversion in the future study.
RESUMO
The diffuse-reflectance FTIR spectroscopy (DRIFTS) and attenuated total reflection FTIR (ATR-FTIR) were used to study polygonum multi florum Thumb and its extracts. The result shows that when acetone is used as extraction agent, the contents of extracts in polygonum multi florum Thunb's phloem are highest, those in polygonum multi florum Thunb's xylem are the lowest. Compared with DRIFTS and ATR-FTIR, it can be found that there are some differences between polygonum multi florum Thunb and its extracts. There are two gentle absorption peaks at 3 576 and 3 147 cm(-1) respectively for polygonum multi florum Thunb, while there is a strong absorption peak at 3 351 cm(-1) for its extracts, showing that there may be more OH... active ingredients in polygonum multi florum Thunb's extracts. Meanwhile, polygonum multiflorum Thunb has strong absorption peaks at 931, 859, 766 and 709 cm(-1) respectively, while its extracts have no resembling absorption peaks. It also shows that the extracts are active ingredients.
Assuntos
Medicamentos de Ervas Chinesas/análise , Extratos Vegetais/química , Polygonum/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodosRESUMO
Skeletal muscles, the largest organ responsible for energy metabolism in most mammals, play a vital role in maintaining the body's homeostasis. Epigenetic modification, specifically histone acetylation, serves as a crucial regulatory mechanism influencing the physiological processes and metabolic patterns within skeletal muscle metabolism. The intricate process of histone acetylation modification involves coordinated control of histone acetyltransferase and deacetylase levels, dynamically modulating histone acetylation levels, and precisely regulating the expression of genes associated with skeletal muscle metabolism. Consequently, this comprehensive review aims to elucidate the epigenetic regulatory impact of histone acetylation modification on skeletal muscle metabolism, providing invaluable insights into the intricate molecular mechanisms governing epigenetic modifications in skeletal muscle metabolism.
RESUMO
In order to study the adhesion properties of fast-melting SBS-modified asphalt (SBS-T) at the interface with aggregates, the contact angles of three dosages of SBS-T asphalt with three liquids (distilled water, glycerol, and formamide) were determined by the sessile drop method based on surface free energy theory. The evaluation indexes such as cohesion, asphalt-aggregate adhesion, stripping work and energy ratio of the asphalt were analyzed and the adhesion properties of the asphalt-aggregate system were investigated with the help of micromechanical methods. The results indicate that SBS-T can improve the adhesion properties of the asphalt. Furthermore, as the dosage of the modifier increases, the cohesion work, adhesion work, and energy ratio of the SBS-T asphalt exhibit a similar rise. As the spalling work reduces and the adhesion between asphalt and aggregate improves, it is noteworthy that the SBS-T asphalt-aggregate system exhibits superior adhesion performance compared to the SBS-modified asphalt-aggregate system, despite the same dosage.
RESUMO
The regulatory axis plays a vital role in interpreting the information exchange and interactions among mammal organs. In this study on feed efficiency, it was hypothesized that a rumen-liver-muscle-fat (RLMF) regulatory axis exists and scrutinized the flow of energy along the RLMF axis employing consensus network analysis from a spatial transcriptomic standpoint. Based on enrichment analysis and protein-protein interaction analysis of the consensus network and tissue-specific genes, it was discovered that carbohydrate metabolism, energy metabolism, immune and inflammatory responses were likely to be the biological processes that contribute most to feed efficiency variation on the RLMF regulatory axis. In addition, clusters of genes related to the electron respiratory chain, including ND (2,3,4,4L,5,6), NDUF (A13, A7, S6, B3, B6), COX (1,3), CYTB, UQCR11, ATP (6,8), clusters of genes related to fatty acid metabolism including APO (A1, A2, A4, B, C3), ALB, FG (A, G), as well as clusters of the ribosomal-related gene including RPL (8,18A,18,15,13, P1), the RPS (23,27A,3A,4X), and the PSM (A1-A7, B6, C1, C3, D2-D4, D8 D9, E1) could be the primary effector genes responsible for feed efficiency variation. The findings demonstrate that high feed efficiency cattle, through the synergistic action of the regulatory axis RLMF, may improve the efficiency of biological processes (carbohydrate metabolism, protein ubiquitination, and energy metabolism). Meanwhile, high feed efficiency cattle might enhance the ability to respond to immunity and inflammation, allowing nutrients to be efficiently distributed across these organs associated with digestion and absorption, energy-producing, and energy-storing organs. Elucidating the distribution of nutrients on the RLMF regulatory axis could facilitate an understanding of feed efficiency variation and achieve the study on its molecular regulation.
RESUMO
To overcome the shortcomings of traditional wet styrene-butadiene-styrene (SBS) modification technology, such as its high energy consumption and thermal decomposition, a warm mix and fast-melting SBS modifier was developed. Based on the theory of rheology, a dynamic shear rheometer (DSR) was applied to investigate the viscoelastic properties of the warm mix and fast-melting SBS-modified asphalt using a frequency scanning test. Atomic force microscopy (AFM) was used to reveal the modification mechanism of the SBS-modified asphalt. An investigation of the thermal stability of the asphalt binder was conducted using a thermogravimetric test (TG). The results exhibited that the SBS-modified asphalt had good viscoelastic properties, as well as thermal stability. The "bee structure" of the SBS-modified asphalt was finer and more stable. In addition, the adhesion and the Derjaguin-Muller-Toporov (DMT) modulus of the SBS-modified asphalt at a warm mixing speed was higher than that of regular SBS-modified asphalt.
RESUMO
Rapid and sensitive detection of pathogens is of utmost importance in interrupting the transmission chain of infectious diseases. In recent years, this has proven to be vital during the coronavirus disease (COVID-19) global pandemic that put countless lives at risk. Numerous molecular diagnostic methods were used, including RT-PCR, NASBA, E-SDA, E-RCA, LAMP, and RPA. However, these technologies potentially require primer optimization and complex instruments. Here, we propose the RHAM (RNase Hybridization-Assisted amplification) system as a rapid, specific, and sensitive molecular diagnosis platform. Combining the LAMP and RNase HII-mediated fluorescent reporter, the RHAM system can amplify and visualize the target in one isothermal system with high sensitivity (5 × 102 copies/mL). There was no cross-reactivity with other common respiratory viruses. Analysis of clinical samples revealed the RHAM system to generate positive signals within 15 min without false positive or negative results. The present study shows that RHAM is not only an ideal platform for detecting pathogens, such as SARS-CoV-2 but can be potentially applied in POCT settings.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , RNA Viral/genéticaRESUMO
Butyrate contributes epigenetically to the changes in cellular function and tissue development of the rumen in ruminant animals, which might be achieved by its genetic or epigenetic regulation of gene expression. To explore the role of butyrate on bovine rumen epithelial function and development, this study characterized genome-wide H3K27ac modification changes and super-enhancer profiles in rumen epithelial primary cells (REPC) induced with butyrate by ChIP-seq, and analyzed its effects on gene expression and functional pathways by integrating RNA-seq data. The results showed that genome-wide acetylation modification was observed in the REPC with 94,675 and 48,688 peaks in the butyrate treatment and control group, respectively. A total of 9750 and 5020 genes with increased modification (H3K27ac-gain) and decreased modification (H3K27ac-loss) were detected in the treatment group. The super-enhancer associated genes in the butyrate-induction group were involved in the AMPK signaling pathway, MAPK signaling pathway, and ECM-receptor interaction. Finally, the up-regulated genes (PLCG1, CLEC3B, IGSF23, OTOP3, ADTRP) with H3K27ac gain modification by butyrate were involved in cholesterol metabolism, lysosome, cell adhesion molecules, and the PI3K-Akt signaling pathway. Butyrate treatment has the role of genome-wide H3K27ac acetylation on bovine REPC, and affects the changes in gene expression. The effect of butyrate on gene expression correlates with the acetylation of the H3K27ac level. Identifying genome-wide acetylation modifications and expressed genes of butyrate in bovine REPC cells will expand the understanding of the biological role of butyrate and its acetylation.
Assuntos
Epigênese Genética , Histonas , Bovinos , Animais , Histonas/metabolismo , Acetilação , Butiratos/farmacologia , Butiratos/metabolismo , Rúmen/metabolismo , Fosfatidilinositol 3-Quinases/metabolismoRESUMO
Matricarla chamomilla L. is native to European countries and widely cultivated in China, especially in Xinjiang. It has been used in Uygur medicine for the treatment of cough caused by asthma. In this study, UHPLC-Q-Orbitrap-MS was used to detect and identify the components from the active fraction of M. Chamomile, 64 compounds were identified by combining the standards, related literatures and mass spectrometry fragments, including 10 caffeoyl quinic acids, 38 flavonoids, 8 coumarins, 5 alkaloids and 3 other compounds. Furtherly, the anti-asthma activity of active fraction of M. Chamomile was investigated in OVA-induced allergic asthma rat model. The results showed that the number of EOS in Penh and bronchoalveolar lavage fluid (BALF) in the group of the active fraction of M. Chamomile was significantly lower than that in the model group. Besides, the active fraction of M. Chamomile can significantly reduce the IgE level and increased glutathione peroxidase (GSH-Px) in the serum of OVA-induced rats, and ameliorated OVA-induced lung injury. Hence, M. Chamomile could be used to treat asthma through their in vivo antioxidant and anti-inflammatory effects. This study explored the potential material basis of M. Chamomile for the treatment of asthma.
RESUMO
Residual feed intake (RFI) is crucial economic indicator used for calculating the feed efficiency of growing beef cattle. circRNA plays an important biological role in gene transcriptional regulation, but little is known about its potential functional regulation underlying RFI phenotypic variation. As the core center of regulation of animal feeding, the hypothalamus is closely associated with RFI. Therefore, the present study aimed to identify the key genes and functional pathways contributing to variance in cattle RFI phenotypes using RNA sequencing from hypothalamic tissue samples, in order to gain insight into the potential regulatory role of circRNAs in bovine RFI phenotypic variation. Differentially expressed genes were detected by RNA sequencing for beef cattle in the high and low RFI groups, followed by GO, KEGG enrichment, and circRNA-miRNA co-expression network analysis. A total of 257 circRNAs were differentially expressed between the two groups, with 128 significantly upregulated and 129 significantly downregulated genes in H group compared to L group. Among them, 9 unique circRNAs were present in group L and 4 unique circRNAs were present in group H. GO and KEGG enrichment analysis of the source genes of the differentially expressed circRNAs revealed that they were mainly involved in metabolic processes, such as cellular metabolic processes, cellular macromolecular metabolic processes, and regulatory pathways related to nutrient metabolism, including protein and amino acid metabolism, as well as vitamin metabolism and pancreatic secretion associated with the animal feeding behavior. The circRNAs detected in this study were mostly novel, and have not been investigated directly to be associated with the RFI phenotype. Interestingly, most miRNAs of differentially expressed circRNAs predicted based on the circRNA-miRNA co-expression network analysis by using top 50 differentially expressed circRNAs and 13 unique circRNAs, have been reported to be related to animal RFIs, implying that circRNAs in bovine hypothalamic tissue may regulate phenotypic variation in RFI through miRNAs. The study results illustrate the complex biological functions of the hypothalamus in regulating feed efficiency and showing the potential role of circRNAs in the feeding behavior regulation of livestock, which would contributing to expanding the understanding of circRNA.
Assuntos
MicroRNAs , RNA Circular , Bovinos/genética , Animais , RNA Circular/genética , Ingestão de Alimentos/genética , Ração Animal/análise , Hipotálamo , MicroRNAs/genéticaRESUMO
Residual feed intake (RFI) is one of the indicators of feed efficiency. To investigate the microbial characteristics and differences in the gastrointestinal tract of beef cattle with different RFI, a metagenome methodology was used to explore the characteristics of the rumen and fecal microbiota in 10 Qinchuan cattle (five in each of the extremely high and extremely low RFI groups). The results of taxonomic annotation revealed that Bacteroidetes and Firmicutes were the most dominant phyla in rumen and feces. Prevotella was identified as a potential biomarker in the rumen of the LRFI group by the LEfSe method, while Turicibacter and Prevotella might be potential biomarkers of the HRFI and LRFI group in feces, respectively. Functional annotation revealed that the microbiota in the rumen of the HRFI group had a greater ability to utilize dietary polysaccharides and dietary protein. Association analysis of rumen microbes (genus level) with host genes revealed that microbiota including Prevotella, Paraprevotella, Treponema, Oscillibacter, and Muribaculum, were significantly associated with differentially expressed genes regulating RFI. This study discovered variances in the microbial composition of rumen and feces of beef cattle with different RFIs, demonstrating that differences in microbes may play a critical role in regulating the bovine divergent RFI phenotype variations.