RESUMO
Adequate endometrial growth is a critical factor for successful embryo implantation and pregnancy maintenance. We previously reported the efficacy of intrauterine administration of botulinum toxin A (BoTA) in improving the endometrial angiogenesis and the rates of embryo implantation. Here, we further evaluated its potent therapeutic effects on the uterine structural and functional repair and elucidated underlying molecular regulatory mechanisms. This study demonstrated that a murine model of thin endometrium was successfully established by displaying dramatically decreased endometrial thickness and the rates of embryo implantation compared to normal endometrium. Interestingly, the expressions of insulin-like growth factor binding protein-3 (IGFBP3) and an active 35 kDa-form of osteopontin (OPN) were significantly reduced in thin endometrium, which were almost fully restored by intrauterine BoTA administration. Neutralization of BoTA-induced IGFBP3 subsequently suppressed proteolytic cleavage of OPN, exhibiting un-recovered endometrial thickness even in the presence of BoTA administration, suggesting that BoTA-induced endometrial regeneration might be mediated by IGFBP3-dependent OPN proteolytic cleavage. Our findings suggest that intrauterine BoTA administration improves the endometrial environment in our murine model with thin endometrium by increasing endometrial receptivity and angiogenesis in a manner dependent on the regulatory effect of IGFBP3 on OPN proteolytic cleavage, proposing BoTA as an efficient therapeutic strategy for the patients with thin endometrium.
Assuntos
Toxinas Botulínicas Tipo A , Endométrio , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Osteopontina , Animais , Feminino , Humanos , Camundongos , Gravidez , Toxinas Botulínicas Tipo A/farmacologia , Modelos Animais de Doenças , Implantação do Embrião , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Osteopontina/metabolismo , Osteopontina/farmacologiaRESUMO
BACKGROUND: The emerging role of microglia in neurological disorders requires a novel method for obtaining massive amounts of adult microglia. We aim to develop a new method for obtaining bankable and expandable adult-like microglia in mice. METHODS: The head neuroepithelial layer (NEL) that composed of microglial progenitor and neuroepithelial cells at mouse E13.5 was dissected and then cultured or banked. Microglia (MG) isolated from the cultured NEL by magnetic-activated cell sorting system were obtained and named NEL-MG. RESULTS: The NEL included microglia progenitors that proliferate and ramify over time with neuroepithelial cells as feeder. In functional analysis, NEL-MG exhibited microglial functions, such as phagocytosis (microbeads, amyloid ß, synaptosome), migration, and inflammatory response following lipopolysaccharide (LPS) stimulation. NEL was passage cultured and the NEL-MG exhibited a higher expression of microglia signature genes than the neonatal microglia, a widely used in vitro surrogate. Banking or long-term passage culture of NEL did not affect NEL-MG characteristics. Transcriptome analysis revealed that NEL-MG exhibited better conservation of microglia signature genes with a closer fidelity to freshly isolated adult microglia than neonatal microglia. NEL-MG could be re-expandable when they were plated again on neuroepithelial cells. CONCLUSIONS: This new method effectively contributes to obtaining sufficient matured form of microglia (adult-like microglia), even when only a small number of experimental animals are available, leading to a broad application in the field of neuroscience.
Assuntos
Técnicas de Cultura de Células/métodos , Córtex Cerebral/fisiologia , Células Epiteliais/fisiologia , Perfilação da Expressão Gênica/métodos , Microglia/fisiologia , Útero/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Linhagem Celular , Córtex Cerebral/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Útero/citologiaRESUMO
STUDY QUESTION: Can we reconstitute physiologically relevant 3-dimensional (3D) microengineered endometrium in-vitro model? SUMMARY ANSWER: Our representative microengineered vascularised endometrium on-a-chip closely recapitulates the endometrial microenvironment that consists of three distinct layers including epithelial cells, stromal fibroblasts and endothelial cells in a 3D extracellular matrix in a spatiotemporal manner. WHAT IS KNOWN ALREADY: Organ-on-a-chip, a multi-channel 3D microfluidic cell culture system, is widely used to investigate physiologically relevant responses of organ systems. STUDY DESIGN, SIZE, DURATION: The device consists of five microchannels that are arrayed in parallel and partitioned by array of micropost. Two central channels are for 3D culture and morphogenesis of stromal fibroblast and endothelial cells. In addition, the outermost channel is for the culture of additional endometrial stromal fibroblasts that secrete biochemical cues to induce directional pro-angiogenic responses of endothelial cells. To seed endometrial epithelial cells, on Day 8, Ishikawa cells were introduced to one of the two medium channels to adhere on the gel surface. After that, the microengineered endometrium was cultured for an additional 5-6 days (total â¼ 14 days) for the purpose of each experiment. PARTICIPANTS/MATERIALS, SETTING, METHODS: Microfluidic 3D cultures were maintained in endothelial growth Medium 2 with or without oestradiol and progesterone. Some cultures additionally received exogenous pro-angiogenic factors. For the three distinct layers of microengineered endometrium-on-a-chip, the epithelium, stroma and blood vessel characteristics and drug response of each distinct layer in the microfluidic model were assessed morphologically and biochemically. The quantitative measurement of endometrial drug delivery was evaluated by the permeability coefficients. MAIN RESULTS AND THE ROLE OF CHANCE: We established microengineered vascularised endometrium-on-chip, which consists of three distinct layers: epithelium, stroma and blood vessels. Our endometrium model faithfully recapitulates in-vivo endometrial vasculo-angiogenesis and hormonal responses displaying key features of the proliferative and secretory phases of the menstrual cycle. Furthermore, the effect of the emergency contraception drug levonorgestrel was evaluated in our model demonstrating increased endometrial permeability and blood vessel regression in a dose-dependent manner. We finally provided a proof of concept of the multi-layered endometrium model for embryo implantation, which aids a better understanding of the molecular and cellular mechanisms underlying this process. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This report is largely an in-vitro study and it would be beneficial to validate our findings using human primary endometrial cells. WIDER IMPLICATIONS OF THE FINDINGS: Our 3D microengineered vascularised endometrium-on-a-chip provides a new in-vitro approach to drug screening and drug discovery by mimicking the complicated behaviours of human endometrium. Thus, we suggest our model as a tool for addressing critical challenges and unsolved problems in female diseases, such as endometriosis, uterine cancer and female infertility, in a personalised manner. STUDY FUNDING/COMPETING INTEREST(S): This work is supported by funding from the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) to Y.J.K. (No. 2018R1C1B6003), to J.A. (No. 2020R1I1A1A01074136) and to H.S.K. (No. 2020R1C1C100787212). The authors report no conflicts of interest.
Assuntos
Células Endoteliais , Dispositivos Lab-On-A-Chip , Implantação do Embrião , Endométrio , Feminino , Humanos , Ciclo MenstrualRESUMO
Profilin-1 (PFN1) regulates actin polymerization and cytoskeletal growth. Despite the essential roles of PFN1 in cell integration, its subcellular function in keratinocyte has not been elucidated yet. Here we characterize the specific regulation of PFN1 in DNA damage response and repair machinery. PFN1 depletion accelerated DNA damage-mediated apoptosis exhibiting PTEN loss of function instigated by increased phosphorylated inactivation followed by high levels of AKT activation. PFN1 changed its predominant cytoplasmic localization to the nucleus upon DNA damage and subsequently restored the cytoplasmic compartment during the recovery time. Even though γH2AX was recruited at the sites of DNA double strand breaks in response to DNA damage, PFN1-deficient cells failed to recruit DNA repair factors, whereas control cells exhibited significant increases of these genes. Additionally, PFN1 depletion resulted in disruption of PTEN-AKT cascade upon DNA damage and CHK1-mediated cell cycle arrest was not recovered even after the recovery time exhibiting γH2AX accumulation. This might suggest PFN1 roles in regulating DNA damage response and repair machinery to protect cells from DNA damage. Future studies addressing the crosstalk and regulation of PTEN-related DNA damage sensing and repair pathway choice by PFN1 may further aid to identify new mechanistic insights for various DNA repair disorders.
Assuntos
Distúrbios no Reparo do DNA/genética , Reparo do DNA/genética , Histonas/genética , Profilinas/genética , Actinas/genética , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Quinase 1 do Ponto de Checagem/genética , Citoplasma/genética , Citoesqueleto/genética , Dano ao DNA/genética , Distúrbios no Reparo do DNA/patologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Fosforilação/genéticaRESUMO
Successful implantation requires the synchronization of viable embryonic development with endometrial receptivity. The mechanisms allowing for the initiation of crosstalk between the embryo and the endometrium remain elusive; however, recent studies have revealed that there are alterations in endometrial microRNAs (miRs) in women suffering repeated implantation failure and that one of the altered miRs is miR-145. We assessed the role of miR-145 and its target IGF1R, in early implantation. miR-145 overexpression and IGF1R knockdown were achieved in Ishikawa endometrial cells. Quantitative PCR, western blotting and 3'UTR luciferase reporter assays confirmed that IGF1R is a direct target of miR-145 in the endometrium. Attachment of mouse embryos or IGF1-coated beads to endometrial epithelial cells was used to study the effects of altered miR-145 and/or IGF1R expression on early implantation events. miR-145 overexpression or specific reduction of IGF1R impaired attachment in both cases. An IGF1R target protector prevented the miR-145-mediated reduction in IGF1R and reversed the effect of miR-145 overexpression on attachment. The data demonstrate that miR-145 influences embryo attachment by reducing the level of IGF1R in endometrium.
Assuntos
Implantação do Embrião/fisiologia , Endométrio/fisiologia , MicroRNAs/metabolismo , Receptores de Somatomedina/metabolismo , Animais , Comunicação Celular , Linhagem Celular Tumoral , Técnicas de Cultura Embrionária , Implantação do Embrião/genética , Endométrio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , MicroRNAs/genética , Microesferas , Interferência de RNA , RNA Interferente Pequeno , Receptor IGF Tipo 1 , Receptores de Somatomedina/biossíntese , Receptores de Somatomedina/genéticaRESUMO
Mice with T-cell-specific loss of the tumor suppressor gene PTEN early in T-cell ontogeny develop thymic lymphomas that invariably harbor a reciprocal translocation involving the T-cell receptor α/δ locus and c-myc, t(14;15). In addition to its known function as a lipid phosphatase opposing PI3K signaling, PTEN has also been described as playing a prominent role in promoting genomic stability. As a result, it has been uncertain which one(s) of these 2 separable features were required to block the development of lymphoma. Here, using a conditional model in which T cells selectively express 1 phosphatase-dead PTEN mutant (C124S) and maintain 1 null allele, we show that PTEN phosphatase activity is required for preventing the emergence of a malignant T-cell population harboring t(14;15), thus constituting a critical function of PTEN in preventing lymphomagenesis.
Assuntos
Regulação Neoplásica da Expressão Gênica , Linfoma de Células T/genética , PTEN Fosfo-Hidrolase/genética , Linfócitos T/enzimologia , Neoplasias do Timo/genética , Animais , Medula Óssea/enzimologia , Medula Óssea/patologia , Quimera/genética , Quimera/metabolismo , Cromossomos de Mamíferos , Linfoma de Células T/enzimologia , Linfoma de Células T/patologia , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/deficiência , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Transdução de Sinais , Linfócitos T/patologia , Timo/enzimologia , Timo/patologia , Neoplasias do Timo/enzimologia , Neoplasias do Timo/patologia , Translocação GenéticaRESUMO
STUDY QUESTION: Does the interaction between integrin and its ligand osteopontin (OPN) mediate embryonic attachment to endometrial epithelium at implantation? SUMMARY ANSWER: OPN of epithelial origin binds the receptor integrin αvß3 at the maternal surface to support adhesion during the early stages of implantation. WHAT IS KNOWN ALREADY: Integrin αvß3 and OPN are both present in the endometrial luminal epithelium in the mid-secretory phase. STUDY DESIGN, SIZE, DURATION: Microscopy of attachment sites of blastocysts (mouse, n = 151, human, n = 8) and OPN- or BSA-coated beads (n = 488) interacting with Ishikawa cell monolayers at 24 and 48 h. Levels of epithelial OPN or integrin αvß3 were altered by siRNA-mediated targeting and the results compared with non-targeting siRNA or mock-transfected controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: In vitro modelling of early implantation with human endometrial cells (Ishikawa) and mouse or human embryos or ligand-coated beads. Immunolocalization of antigen around attached embryos was measured by image analysis with multiple repeats (n > 3), allowing a gradient of relative intensity to be detected. Attachment was quantified using a stability scale and protein expression documented by indirect immunofluorescence. Protein associations were probed by pulldown assays. MAIN RESULTS AND THE ROLE OF CHANCE: Integrin and OPN levels were increased in epithelial cells near to attached embryos. The pulldown assay confirmed OPN-integrin αvß3 binding (n > 3). Decreased attachment stability of mouse embryos observed after siRNA knock-down of integrin αvß3 or OPN itself, or OPN-coated beads after knock-down of integrin αvß3, was tested for significance using Kruskal-Wallis with Dunn's post hoc tests. LIMITATIONS, REASONS FOR CAUTION: In vitro model. Attachment data using human embryos is limited by embryo availability. Mouse embryo attachment to human cells involves a species crossover so must be interpreted with caution. Ligand-coated beads allow specific molecular interactions mediating attachment to be probed, but obviously lack the adhesion and signaling repertoire of a live embryo. WIDER IMPLICATIONS OF THE FINDINGS: Some of the literature identifies reduced integrin αvß3 expression in infertile endometrium; these findings predict that embryo attachment stability will be reduced in vivo if integrin levels are low. We suggest that the robustness of the initial attachment of the embryo affects its ability to progress to the post-epithelial phase of implantation; some poorly attached embryos will be lost. STUDY FUNDING/COMPETING INTEREST(S): No external funds were used for this study, which was supported by funds from the Universities of Manchester and Oxford. None of the authors has any conflict of interest to declare. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
Implantação do Embrião/fisiologia , Endométrio/citologia , Integrina alfaVbeta3/metabolismo , Osteopontina/metabolismo , Animais , Blastocisto/metabolismo , Blastocisto/ultraestrutura , Linhagem Celular , Endométrio/metabolismo , Feminino , Humanos , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/fisiologia , Camundongos , Osteopontina/fisiologia , Interferência de RNARESUMO
Various adjuvants have been tested clinically for patients with problems with embryo implantation during in vitro fertilization (IVF)-embryo transfer (ET). Vitamin D3, an essential modulator of various physiological processes, has received attention as an important adjuvant for successful pregnancy, as many studies have shown a strong association between vitamin D deficiency and implantation failure and fetal growth restriction. However, vitamin D has been widely utilized in different protocols, resulting in non-reproducible and debatable outcomes. In the present study, we demonstrated that cyclic intrauterine administration of vitamin D3 increased endometrial receptivity and angiogenesis, which could be attributed to increased recruitment of uterus-resident natural killer cells. In particular, cyclic treatment of vitamin D3 promoted stable attachment of the embryo onto endometrial cells in vitro, suggesting its merit during the early stage of embryo implantation to support the initial maternal-fetal interactions. Our findings suggest that women with repeated implantation failure may benefit from the use of vitamin D3 as a risk-free adjuvant prior to IVF-ET procedures to improve the uterine environment, and make it favorable for embryo implantation.
Assuntos
Colecalciferol , Implantação do Embrião , Implantação do Embrião/efeitos dos fármacos , Feminino , Colecalciferol/farmacologia , Colecalciferol/administração & dosagem , Gravidez , Humanos , Animais , Endométrio/efeitos dos fármacos , Fertilização in vitro/métodos , Transferência Embrionária , Células Matadoras Naturais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Útero/efeitos dos fármacosRESUMO
Background: Asherman's syndrome (AS) is a dreadful gynecological disorder of the uterus characterized by intrauterine adhesion with severe fibrotic lesions, resulting in a damaged basalis layer with infertility. Despite extensive research on overcoming AS, evidence-based effective and reproducible treatments to improve the structural and functional morphology of the AS endometrium have not been established. Methods: Endometrial organoids generated from human or mouse endometrial tissues were transplanted into the uterine cavity of a murine model of AS to evaluate their transplantable feasibility to improve the AS uterine environment. The successful engraftment of organoid was confirmed by detection of human mitochondria and cytosol (for human endometrial organoid) or enhanced green fluorescent protein signals (for mouse endometrial organoid) in the recipient endometrium. The therapeutic effects mediated by organoid transplantation were examined by the measurements of fibrotic lesions, endometrial receptivity and angiogenesis, and fertility assessment by recording the number of implantation sites and weighing the fetuses and placenta. To explore the cellular and molecular mechanisms underlying the recovery of AS endometrium, we evaluated the status of mitochondrial movement and biogenetics in organoid transplanted endometrium. Results: Successfully engrafted endometrial organoids with similar morphological and molecular features to the parental tissues dramatically repaired the AS-induced damaged endometrium, significantly reducing fibrotic lesions and increasing fertility outcomes in mice. Moreover, dysfunctional mitochondria in damaged tissues, which we propose might be a key cellular feature of the AS endometrium, was fully recovered by functional mitochondria transferred from engrafted endometrial organoids. Endometrial organoid-originating mitochondria restored excessive collagen accumulation in fibrotic lesions and shifted uterine metabolic environment to levels observed in the normal endometrium. Conclusions: Our findings suggest that endometrial organoid-originating mitochondria might be key players to mediate uterine repair resulting in fertility enhancement by recovering abrogated metabolic circumstance of the endometrium with AS. Further studies addressing the clinical applicability of endometrial organoids may aid in identifying new therapeutic strategies for infertility in patients with AS.
Assuntos
Infertilidade , Útero , Feminino , Gravidez , Humanos , Animais , Camundongos , Endométrio , Mitocôndrias , OrganoidesRESUMO
Most of embryos fail to produce live offspring during In Vitro Fertilization-Embryo Transfer (IVF-ET) procedure. There is a dearth of research activity addressing this problem despite the significant population of women suffering from repeated implantation failure after transfer of high-quality of embryos. As a clinically accessible option, granulocyte colony stimulating factor (G-CSF) is often used for the treatment to improve the rates of embryo implantation. However, there are currently no evidence-based standardized protocol for the clinical use of G-CSF. G-CSF was administered into one side of mouse uterine horns and saline was infused into the other side of horns as a control. Intrauterine G-CSF administration showed maximal effects 24 h after administration in enhancing endometrial receptivity and subsequent increase of angiogenesis by demonstrating elevated integrin ß3 and OPN and reduced cytotoxicity of NK cells. Furthermore, G-CSF administration 24 h prior to embryo transfer promoted the stability of attached embryos at the early stage of implantation in vitro. Our findings suggest as new consensus criteria providing a potential therapeutic strategy of the clinical use of G-CSF to achieve maximal effects of IVF-ET for patients who are suffering from repeated implantation failure with the problems with endometrial receptivity.
Assuntos
Implantação do Embrião , Transferência Embrionária , Gravidez , Feminino , Animais , Camundongos , Taxa de Gravidez , Transferência Embrionária/métodos , Fertilização in vitro/métodos , Fator Estimulador de Colônias de GranulócitosRESUMO
Non-spherical polymer nanoparticles (NPs) have gained attention in various fields, but their fabrication remains challenging. In this study, we present a simple protocol for synthesizing partially etched polystyrene (PS) nanoparticles through emulsion polymerization and chemical etching. By adjusting the degree of crosslinking, we selectively dissolve the weakly crosslinked portions of the particles, resulting in partially etched PS NPs with increased surface area. These partially etched NPs are evaluated for their use as solid surfactants in Pickering emulsions, where they demonstrate significantly improved emulsion stability compared to intact spherical NPs. Our results contribute to the field of nanoparticle shape control and provide insights into developing novel materials for various applications, particularly in the area of solid surfactant usage. Additionally, the importance of conducting cellular toxicity studies using these partially etched NPs for future work is also emphasized.
RESUMO
We aimed to assess the efficacy of accumulated embryo transfer (ACC-ET) through several controlled ovarian hyperstimulation (COS) cycles to increase the rates of pregnancy in patients with poor ovarian response (POR). We retrospectively reviewed the medical records of 588 patients with POR under 43-years old who underwent embryo transfer from January 2010 to December 2015. We compared the pregnancy rate (PR), clinical pregnancy rate (CPR), and live birth rate (LBR) between ACC-ET (frozen-thawed: 47; fresh + frozen-thawed: 24) group (n = 71) and fresh ET groups (n = 517). Characteristics of ACC-ET patients were similar to those of fresh ET groups (Age: 38.1 ± 3.5 vs. 38.2 ± 3.7, p = 0.88; Anti Müllerian Hormone (AMH; ng/mL): 0.5 ± 0.4 vs. 0.6 ± 0.6, p = 0.38; follicle stimulating hormone (FSH: mIU/mL): 11.9 ± 8.0 vs. 10.8 ± 9.0, p = 0.35). The total number of transferred embryos (3.1 ± 0.9 vs. 1.5 ± 0.7, p = 0.00), PR (29.6% (21/71) vs. 18.8% (97/517), p = 0.040), and CPR (23.5% (16/68) vs. 14.0% (71/508) p = 0.047) were significantly higher in the ACC-ET group than in the fresh ET group. In addition, PR, CPR, and LBR increased with the number of ET in the fresh ET group. However, there were no significant differences observed in LBR between ACC-ET and fresh ET groups (14.9% (10/67) vs. 9.8% (50/508), p = 0.203). From our knowledge, there is no clinical evidence reported to prove that transfer of multiple embryos of adequate quality obtained through multiple cycles can compensate for the limited number of retrieved oocytes from POR patients. We concluded that ACC-ET from several COS cycles could be an alternative method to increase PR and CPR in <43-year-old patients with POR.
RESUMO
This study is designed to investigate the effects of increased progesterone (P4) levels on the quality of retrieved oocytes and embryos during IVF. This retrospective analysis included 982 all-freezing in vitro fertilization (IVF) cycles (conducted between November 2019 and June 2020 at CHA Fertility Center Bundang, South Korea) in which serum P4 levels were measured on the day of human chorionic gonadotropin (hCG) administration. Our study revealed that the serum P4 levels on the day of hCG administration are strongly associated with the rates of oocyte maturation, displaying a positive correlation in patients with serum P4 < 2.25 ng/mL (p = 0.025). Moreover, patients with serum P4 < 1.25 ng/mL showed relatively low fertilization rates (p = 0.037), and the rates of good embryo retrieval were significantly increased with the serum P4 level < 1.5 ng/mL (p = 0.001). Interestingly, serum P4 level on the day of hCG administration affects the rate of good-quality embryo development, especially at the cleavage stage, and is associated with the status of ovarian responses. Our current study suggests that serum P4 level on the day of hCG administration negatively affects the rates of oocyte maturation, fertilization, and the development of good embryos.
RESUMO
Endometrial angiogenesis plays crucial roles in determining the endometrial receptivity. Defects in endometrial receptivity often cause repeated implantation failure, which is one of the major unmet needs for infertility and contributes a major barrier to the assisted reproductive technology. Despite the numerous extensive research work, there are currently no effective evidence-based treatments to prevent or cure this condition. As a non-invasive treatment strategy, botulinum toxin A (BoTA) was administered into one side of mouse uterine horns, and saline was infused into the other side of horns for the control. Impact of BoTA was assessed in the endometrium at 3 or 8 days after infusion. We demonstrated that BoTA administration enhances the capacity of endothelial cell tube formation and sprouting. The intrauterine BoTA administration significantly induced endometrial angiogenesis displaying increased numbers of vessel formation and expression levels of related marker genes. Moreover, BoTA intrauterine application promoted the endometrial receptivity, and the rates of embryo implantation were improved with BoTA treatment with no morphologically retarded embryos. Intrauterine BoTA treatment has a beneficial effect on vascular reconstruction of functional endometrium prior to embryo implantation by increasing endometrial blood flow near the uterine cavity suggesting BoTA treatment as a potential therapeutic strategy for patients who are suffering from repeated implantation failure with the problems with endometrial receptivity.
Assuntos
Toxinas Botulínicas Tipo A/administração & dosagem , Implantação do Embrião/efeitos dos fármacos , Endométrio/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Útero/efeitos dos fármacos , Animais , Técnicas de Cultura Embrionária , Feminino , Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Resultado da Gravidez , Útero/metabolismoRESUMO
Ovarian cancer is the deadliest gynecological malignancy worldwide. Although chemotherapy is required as the most standard treatment strategy for ovarian cancer, the survival rates are very low, largely because of high incidence of recurrence due to resistance to conventional surgery and genotoxic chemotherapies. Carboplatin-resistant ovarian cancer cells were generated by continuous treatment over six months. Carboplatin-resistance induced morphological alterations and promoted the rates of proliferation and migration of SKOV3 compared to the parental cells. Interestingly, carboplatin-resistant SKOV3 showed the high levels of γH2AX foci formed at the basal level, and the levels of γH2AX foci remained even after the recovery time, suggesting that the DNA damage response and repair machinery were severely attenuated by carboplatin-resistance. Surprisingly, the expression levels of XRCC4, a critical factor in non-homologous end joining (NHEJ) DNA repair, were significantly decreased in carboplatin-resistant SKOV3 compared with those in non-resistant controls. Furthermore, restoration of NHEJ in carboplatin-resistant SKOV3 by suppression of ABCB1 and/or AR re-sensitized carboplatin-resistant cells to genotoxic stress and reduced their proliferation ability. Our findings suggest that attenuation of the NHEJ DNA repair machinery mediated by resistance to genotoxic stress might be a critical cause of chemoresistance in patients with ovarian cancer.
Assuntos
Carboplatina/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Receptores Androgênicos/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Carboplatina/efeitos adversos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologiaRESUMO
Successful pregnancy inevitably depends on the implantation of a competent embryo into a receptive endometrium. Although many substances have been suggested to improve the rate of embryo implantation targeting enhancement of endometrial receptivity, currently there rarely are effective evidence-based treatments to prevent or cure this condition. Here we strongly suggest minimally-invasive intra-uterine administration of embryo-secreted chemokine CXCL12 as an effective therapeutic intervention. Chemokine CXCL12 derived from pre- and peri-implanting embryos significantly enhances the rates of embryo attachment and promoted endothelial vessel formation and sprouting in vitro. Consistently, intra-uterine CXCL12 administration in C57BL/6 mice improved endometrial receptivity showing increased integrin ß3 and its ligand osteopontin, and induced endometrial angiogenesis displaying increased numbers of vessel formation near the lining of endometrial epithelial layer with higher CD31 and CD34 expression. Furthermore, intra-uterine CXCL12 application dramatically promoted the rates of embryo implantation with no morphologically retarded embryos. Thus, our present study provides a novel evidence that improved uterine endometrial receptivity and enhanced angiogenesis induced by embryo-derived chemokine CXCL12 may aid to develop a minimally-invasive therapeutic strategy for clinical treatment or supplement for the patients with repeated implantation failure with less risk.
Assuntos
Quimiocina CXCL12/genética , Implantação do Embrião/genética , Endométrio/fisiologia , Resultado da Gravidez , Animais , Biomarcadores , Coeficiente de Natalidade , Técnicas de Cultura de Células , Linhagem Celular , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/farmacologia , Endométrio/efeitos dos fármacos , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Neovascularização Fisiológica/genética , Gravidez , Resultado da Gravidez/genética , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismoRESUMO
OBJECTIVE: The aim of this study was to investigate microRNAs (miRNAs) related to follicle-stimulating hormone (FSH) responsiveness using miRNA microarrays and to identify their target genes to determine the molecular regulatory pathways involved in FSH signaling in KGN cells. METHODS: To change the cellular responsiveness to FSH, KGN cells were treated with FSH receptor (FSHR)-specific small interfering RNA (siRNA) followed by FSH. miRNA expression profiles were determined through miRNA microarray analysis. Potential target genes of selected miRNAs were predicted using bioinformatics tools, and their regulatory function was confirmed in KGN cells. RESULTS: We found that six miRNAs (miR-1261, miR-130a-3p, miR-329-3p, miR-185-5p, miR-144-5p and miR-4463) were differentially expressed after FSHR siRNA treatment in KGN cells. Through a bioinformatics analysis, we showed that these miRNAs were predicted to regulate a large number of genes, which we narrowed down to cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and estrogen receptor alpha (ESR1) as the main targets for miR-4463. Functional analysis revealed that miR-4463 is a regulatory factor for aromatase expression and function in KGN cells. CONCLUSION: In this study, we identified differentially expressed miRNAs related to FSH responsiveness. In particular, upregulation of miR-4463 expression by FSHR deficiency in human granulosa cells impaired 17ß-estradiol synthesis by targeting CYP19A1 and ESR1. Therefore, our data might provide novel candidates for molecular biomarkers for use in research into poor responders.
RESUMO
OBJECTIVE: Despite extensive research on implantation failure, little is known about the molecular mechanisms underlying the crosstalk between the embryo and the maternal endometrium, which is critical for successful pregnancy. Profilin 1 (PFN1), which is expressed both in the embryo and in the endometrial epithelium, acts as a potent regulator of actin polymerization and the cytoskeletal network. In this study, we identified the specific role of endometrial PFN1 during embryo implantation. METHODS: Morphological alterations depending on the status of PFN1 expression were assessed in PFN1-depleted or control cells grown on Matrigel-coated cover glass. Day-5 mouse embryos were cocultured with Ishikawa cells. Comparisons of the rates of F-actin formation and embryo attachment were performed by measuring the stability of the attached embryo onto PFN1-depleted or control cells. RESULTS: Depletion of PFN1 in endometrial epithelial cells induced a significant reduction in cell-cell adhesion displaying less formation of colonies and a more circular cell shape. Mouse embryos co-cultured with PFN1-depleted cells failed to form actin cytoskeletal networks, whereas more F-actin formation in the direction of surrounding PFN1-intact endometrial epithelial cells was detected. Furthermore, significantly lower embryo attachment stability was observed in PFN1-depleted cells than in control cells. This may have been due to reduced endometrial receptivity caused by impaired actin cytoskeletal networks associated with PFN1 deficiency. CONCLUSION: These observations definitively demonstrate an important role of PFN1 in mediating cell-cell adhesion during the initial stage of embryo implantation and suggest a potential therapeutic target or novel biomarker for patients suffering from implantation failure.
RESUMO
OBJECTIVE: Endometrial fibrosis, the primary pathological feature of intrauterine adhesion, may lead to disruption of endometrial tissue structure, menstrual abnormalities, infertility, and recurrent pregnancy loss. At present, no ideal therapeutic strategy exists for this fibrotic disease. Eupatilin, a major pharmacologically active flavone from Artemisia, has been previously reported to act as a potent inducer of dedifferentiation of fibrotic tissue in the liver and lung. However, the effects of eupatilin on endometrial fibrosis have not yet been investigated. In this study, we present the first report on the impact of eupatilin treatment on transforming growth factor beta (TGF-ß)-induced endometrial fibrosis. METHODS: The efficacy of eupatilin on TGF-ß-induced endometrial fibrosis was assessed by examining changes in morphology and the expression levels of fibrosis markers using immunofluorescence staining and quantitative real-time reverse-transcription polymerase chain reaction. RESULTS: Eupatilin treatment significantly reduced the fibrotic activity of TGF-ß-induced endometrial fibrosis in Ishikawa cells, which displayed more circular shapes and formed more colonies. Additionally, the effects of eupatilin on fibrotic markers including alpha-smooth muscle actin, hypoxia-inducible factor 1 alpha, collagen type I alpha 1 chain, and matrix metalloproteinase-2, were evaluated in TGF-ß-induced endometrial fibrosis. The expression of these markers was highly upregulated by TGF-ß pretreatment and recovered to the levels of control cells in response to eupatilin treatment. CONCLUSION: Our findings suggest that suppression of TGF-ß-induced signaling by eupatilin might be an effective therapeutic strategy for the treatment of endometrial fibrosis.
RESUMO
Classical non-homologous end-joining (cNHEJ) is the main pathway for the repair of DNA double strand breaks (DSBs) in mammalian cells. In the absence of c-NHEJ, an alternative end-joining (A-EJ) mechanism resolves DSBs. To date, no A-EJ specific factor has been identified. Instead, this mechanism appears to co-opt proteins involved in more than one DNA repair pathway. These include components of base-excision repair (PARP1/XRCC1/LIG3), interstrand cross-link repair (BRCA1/FANCD2), and DSB response/DNA end-resection (MRE11A/RAD50/RBBP8). To clarify the contribution of these factors to A-EJ, here we examined their expression and recruitment to DSBs in correlation with surrogates of cNHEJ (53BP1) and homologous recombination (RAD51) in cells deficient for the cNHEJ end-ligation component XRCC4. This revealed XRCC4-deficient cells exhibited marked increases in the stability of A-EJ transcripts that result in correspondingly elevated levels of associated proteins, in comparison to WT cells. RAD51 was also increased while 53BP1 was unaffected. Treatment with radiomimetic DSB-inducing drug doxorubicin did not influence these activities. However, FANCD2, BRCA1 and XRCC1 foci, prominently associated with 53BP1 foci and hence DSBs resolved by cNHEJ, were only detected in doxorubicin-treated XRCC4-deficient cells. Strikingly, treatment of XRCC4-deficient cells with the PARP-specific inhibitor Niraparib enhanced A-EJ, and substantially induced 53BP1 transcripts and the numbers of A-EJ-associated 53BP1 DNA damage foci. RAD51 was severely inhibited, and upstream cNHEJ (KU70/KU80/DNA-PKCs/ARTEMIS) transcripts were substantially induced. These latter results were recapitulated in BRCA1-deficient cells, which contrastingly did not affect 53BP1 or PARP1 status irrespective of doxorubicin or Niraparib treatment. Hence A-EJ is regulated transcriptionally, reduced by a higher turnover rate in cNHEJ-proficient cells and sustained but fine-tuned by PARP1 in XRCC4-deficient cells to promote DNA repair and survival. Upstream cNHEJ components are similarly transcriptionally down-modulated by PARP1 and BRCA1 in a manner inversely correlated with HR and mechanistically distinct from A-EJ respectively in cNHEJ-deficient and cNHEJ-proficient settings.