Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genet ; 14: 121, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24359297

RESUMO

BACKGROUND: Improvement of feed efficiency in pigs is of great economical and environmental interest and contributes to use limited resources efficiently to feed the world population. Genome scans for feed efficiency traits are of importance to reveal the underlying biological causes and increase the rate of genetic gain. The aim of this study was to determine the genomic architecture of feed efficiency measured by residual energy intake (REI), in association with production, feed conversion ratio (FCR) and nitrogen excretion traits through the identification of quantitative trait loci (QTL) at different stages of growth using a three generation full-sib design population which originated from a cross between Pietrain and a commercial dam line. RESULTS: Six novel QTL for REI were detected explaining 2.7-6.1% of the phenotypic variance in REI. At growth from 60-90 kg body weight (BW), a QTL with a significant dominance effect was identified for REI on SSC14, at a similar location to the QTL for feed intake and nitrogen excretion traits. At growth from 90-120 kg BW, three QTL for REI were detected on SSC2, SSC4 and SSC7 with significant additive, imprinting and additive effects, respectively. These QTL (except for the imprinted QTL) were positionally overlapping with QTL for FCR and nitrogen excretion traits. During final growth (120-140 kg BW), a further QTL for REI was identified on SSC8 with significant additive effect, which overlapped with QTL for nitrogen excretion. During entire analysed growth (60-140 kg BW), a novel additive QTL for REI on SSC4 was observed, with no overlapping with QTL for any other traits considered. CONCLUSIONS: The occurrence of only one overlapping QTL of REI with feed intake suggests that only a small proportion of the variance in REI was explained by change in feed intake, whereas four overlapping QTL of REI with those of nitrogen excretion traits suggests that mostly underlying factors of feed utilisation such as metabolism and protein turnover were the reason for change in REI. Different QTL for REI were identified at different growth stages, indicating that different genes are responsible for efficiency in feed utilisation at different stages of growth.


Assuntos
Ração Animal/análise , Ingestão de Energia , Genoma , Nitrogênio/metabolismo , Sus scrofa/genética , Animais , Peso Corporal , Cromossomos/genética , Cromossomos/metabolismo , Genótipo , Fenótipo , Locos de Características Quantitativas , Sus scrofa/crescimento & desenvolvimento
2.
Front Genet ; 9: 318, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154830

RESUMO

Both natural and artificial selection are among the main driving forces shaping genetic variation across the genome of livestock species. Selection typically leaves signatures in the genome, which are often characterized by high genetic differentiation across breeds and/or a strong reduction in genetic diversity in regions associated with traits under intense selection pressure. In this study, we evaluated selection signatures and genomic inbreeding coefficients, FROH, based on runs of homozygosity (ROH), in six Ugandan goat breeds: Boer (n = 13), and the indigenous breeds Karamojong (n = 15), Kigezi (n = 29), Mubende (n = 29), Small East African (n = 29), and Sebei (n = 29). After genotyping quality control, 45,294 autosomal single nucleotide polymorphisms (SNPs) remained for further analyses. A total of 394 and 6 breed-specific putative selection signatures were identified across all breeds, based on marker-specific fixation index (FST-values) and haplotype differentiation (hapFLK), respectively. These regions were enriched with genes involved in signaling pathways associated directly or indirectly with environmental adaptation, such as immune response (e.g., IL10RB and IL23A), growth and fatty acid composition (e.g., FGF9 and IGF1), and thermo-tolerance (e.g., MTOR and MAPK3). The study revealed little overlap between breeds in genomic regions under selection and generally did not display the typical classic selection signatures as expected due to the complex nature of the traits. In the Boer breed, candidate genes associated with production traits, such as body size and growth (e.g., GJB2 and GJA3) were also identified. Furthermore, analysis of ROH in indigenous goat breeds showed very low levels of genomic inbreeding (with the mean FROH per breed ranging from 0.8% to 2.4%), as compared to higher inbreeding in Boer (mean FROH = 13.8%). Short ROH were more frequent than long ROH, except in Karamojong, providing insight in the developmental history of these goat breeds. This study provides insights into the effects of long-term selection in Boer and indigenous Ugandan goat breeds, which are relevant for implementation of breeding programs and conservation of genetic resources, as well as their sustainable use and management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA