Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Environ Sci Technol ; 58(14): 6381-6390, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547454

RESUMO

The objective of this study was to determine if U sediment concentrations in a U-contaminated wetland located within the Savannah River Site, South Carolina, were greater in the rhizosphere than in the nonrhizosphere. U concentrations were as much as 1100% greater in the rhizosphere than in the nonrhizosphere fractions; however and importantly, not all paired samples followed this trend. Iron (but not C, N, or S) concentrations were significantly enriched in the rhizosphere. XAS analyses showed that in both sediment fractions, U existed as UO22+ coordinated with iron(III)-oxides and organic matter. A key difference between the two sediment fractions was that a larger proportion of U was adsorbed to Fe(III)-oxides, not organic matter, in the rhizosphere, where significantly greater total Fe concentrations and greater proportions of ferrihydrite and goethite existed. Based on 16S rRNA analyses, most bacterial sequences in both paired samples were heterotrophs, and population differences were consistent with the generally more oxidizing conditions in the rhizosphere. Finally, U was very strongly bound to the whole (unfractionated) sediments, with an average desorption Kd value (Usediment/Uaqueous) of 3972 ± 1370 (mg-U/kg)/(mg-U/L). Together, these results indicate that the rhizosphere can greatly enrich U especially in wetland areas, where roots promote the formation of reactive Fe(III)-oxides.


Assuntos
Compostos Férricos , Urânio , Áreas Alagadas , Rizosfera , RNA Ribossômico 16S , Ferro , Óxidos/análise , Oxirredução , Sedimentos Geológicos/microbiologia
2.
Anal Chem ; 95(20): 7960-7967, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37163723

RESUMO

Dissolved organic matter (DOM) is widely recognized to control the solubility and reactivity of trace metals in the environment. However, the mechanisms that govern metal-DOM complexation remain elusive, primarily due to the analytical challenge of fractionating and quantifying metal-organic species within the complex mixture of organic compounds that comprise DOM. Here, we describe a quantitative method for fractionation and element-specific detection of organic-metal complexes using liquid chromatography with online inductively coupled plasma mass spectrometry (LC-ICP-MS). The method implements a post-column compensation gradient to stabilize ICP-MS elemental response across the LC solvent gradient, thereby overcoming a major barrier to achieving quantitative accuracy with LC-ICP-MS. With external calibration and internal standard correction, the method yields concentrations of organic-metal complexes that were consistently within 6% of their true values, regardless of the complex's elution time. We used the method to evaluate the effects of four stationary phases (C18, phenyl, amide, and pentafluoroylphenyl propyl) on the recovery and separation of environmentally relevant trace metals (Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in Suwannee River Fulvic Acid and Suwannee River Natural Organic Matter. The C18, amide, and phenyl phases generally yielded optimal metal recoveries (>75% for all metals except Pb), with the phenyl phase separating polar species to a greater extent than C18 or amide. We also fractionated organic-bound Fe, Cu, and Ni in oxidized and reduced soils, revealing divergent metal-DOM speciation across soil redox environments. By enabling quantitative fractionation of DOM-bound metals, our method offers a means for advancing a mechanistic understanding of metal-organic complexation throughout the environment.

3.
Environ Sci Technol ; 54(5): 2688-2697, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31942795

RESUMO

We investigated the influence of natural organic matter (NOM) on the behavior of Pu(V) in the vadose zone through a combination of the field lysimeter and laboratory studies. Well-defined solid sources of NH4Pu(V)O2CO3(s) were placed in two 5-L lysimeters containing NOM-amended soil collected from the Savannah River Site (SRS) or unamended vadose zone soil and exposed to 3 years of natural South Carolina, USA, meteorological conditions. Lysimeter soil cores were removed from the field, used in desorption experiments, and characterized using wet chemistry methods and X-ray absorption spectroscopy. For both lysimeters, Pu migrated slowly with the majority (>95%) remaining within 2 cm of the source. However, without the NOM amendment, Pu was transported significantly farther than in the presence of NOM. Downward Pu migration appears to be influenced by the initial source oxidation state and composition. These Pu(V) sources exhibited significantly greater migration than previous studies using Pu(IV) or Pu(III) sources. However, batch laboratory experiments demonstrated that Pu(V) is reduced by the lysimeter soil in the order of hours, indicating that downward migration of Pu may be due to cycling between Pu(V) and Pu(IV). Under the conditions of these experiments, NOM appeared to both enhance reduction of the Pu(V) source as well as Pu sorption to soils. This indicates that NOM will tend to have a stabilizing effect on Pu migration under SRS vadose zone field conditions.


Assuntos
Plutônio , Poluentes Radioativos do Solo , Poluentes Radioativos da Água , Rios , South Carolina
4.
Environ Sci Technol ; 53(21): 12416-12424, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31553176

RESUMO

Iodine-129 is one of three key risk drivers at several US Department of Energy waste management sites. Natural organic matter (NOM) is thought to play important roles in the immobilization of aqueous iodide (I-) and iodate (IO3-) in the environment, but molecular interactions between NOM and iodine species are poorly understood. In this work, we investigated iodine and carbon speciation in three humic acid (HA)-I systems using I K-edge XANES and EXAFS and C K-edge XANES spectroscopy: (1) I- in the presence of laccase (an oxidase enzyme) and a mediator, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in a pH 4 buffer, (2) I- in the presence of lactoperoxidase (LPO) and H2O2 in a pH 7 buffer, and (3) IO3- in a pH 3 groundwater. Both oxidase and peroxidase systems could oxidize I- to I2 or hypoiodide (HOI) leading to organo-I formation. However, the laccase-ABTS mediator was the most effective and enhanced I- uptake by HA up to 13.5 mg/g, compared to 1.9 mg/g for the LPO-H2O2. IO3- was abiotically reduced to I2 or HOI leading to an organo-I formation. Pathways for HA iodination include covalent modification of aromatic-type rings by I2 / HOI or iodine incorporation into newly formed benzoquinone species arising from the oxidation of phenolic C species. This study improves our molecular-level understanding of NOM-iodine interactions and stresses the important role that mediators may play in the enzymatic reactions between iodine and NOM.


Assuntos
Iodetos , Iodo , Substâncias Húmicas , Peróxido de Hidrogênio , Oxirredução , Espectroscopia por Absorção de Raios X
5.
Environ Sci Technol ; 52(4): 1963-1970, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29363312

RESUMO

Due to its radiotoxicity, long half-life, and potentially high environmental mobility, neptunium transport is of paramount importance for risk assessment and safety. Environmental transport of neptunium through field lysimeters at the Savannah River Site was observed from both oxidized (Np(V)) and reduced (Np(IV)) source materials. While transport from oxidized neptunium sources was expected, the unexpected transport from reduced neptunium sources spurred further investigation into transport mechanisms. Partial oxidation of the reduced neptunium source resulted in significant release and transport into the mobile aqueous phase, though a reduced colloidal neptunium species appears to have also been present, enhancing neptunium mobility over shorter distances. These field and laboratory experiments demonstrate the multiple controls on neptunium vadose zone transport and chemical behavior, as well as the need for thorough understanding of radionuclide source terms for long-term risk prediction.


Assuntos
Netúnio , Oxirredução
6.
Adv Appl Microbiol ; 101: 83-136, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29050668

RESUMO

Iodine is a biophilic element that is important for human health, both as an essential component of several thyroid hormones and, on the other hand, as a potential carcinogen in the form of radioiodine generated by anthropogenic nuclear activity. Iodine exists in multiple oxidation states (-1, 0, +1, +3, +5, and +7), primarily as molecular iodine (I2), iodide (I-), iodate [Formula: see text] , or organic iodine (org-I). The mobility of iodine in the environment is dependent on its speciation and a series of redox, complexation, sorption, precipitation, and microbial reactions. Over the last 15years, there have been significant advances in iodine biogeochemistry, largely spurred by renewed interest in the fate of radioiodine in the environment. We review the biogeochemistry of iodine, with particular emphasis on the microbial processes responsible for volatilization, accumulation, oxidation, and reduction of iodine, as well as the exciting technological potential of these fascinating microorganisms and enzymes.


Assuntos
Iodo/metabolismo , Interações Microbianas/fisiologia , Humanos , Iodatos/química , Iodatos/metabolismo , Iodetos/química , Iodetos/metabolismo , Iodo/química , Iodo/deficiência , Radioisótopos do Iodo/química , Radioisótopos do Iodo/metabolismo , Oxirredução , Volatilização
7.
Environ Sci Technol ; 51(24): 14330-14341, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29151341

RESUMO

Uranium(VI) exhibits little adsorption onto sediment minerals in acidic, alkaline or high ionic-strength aqueous media that often occur in U mining or contaminated sites, which makes U(VI) very mobile and difficult to sequester. In this work, magnetic mesoporous silica nanoparticles (MMSNs) were functionalized with several organic ligands. The functionalized MMSNs were highly effective and had large binding capacity for U sequestration from high salt water (HSW) simulant (54 mg U/g sorbent). The functionalized MMSNs, after U exposure in HSW simulant, pH 3.5 and 9.6 artificial groundwater (AGW), were characterized by a host of spectroscopic methods. Among the key novel findings in this work was that in the HSW simulant or high pH AGW, the dominant U species bound to the functionalized MMSNs were uranyl or uranyl hydroxide, rather than uranyl carbonates as expected. The surface functional groups appear to be out-competing the carbonate ligands associated with the aqueous U species. The uranyl-like species were bound with N ligand as η2 bound motifs or phosphonate ligand as a monodentate, as well as on tetrahedral Si sites as an edge-sharing bidentate. The N and phosphonate ligand-functionalized MMSNs hold promise as effective sorbents for sequestering U from acidic, alkaline or high ionic-strength contaminated aqueous media.


Assuntos
Nanopartículas , Dióxido de Silício , Adsorção , Urânio , Água
8.
Environ Sci Technol ; 51(20): 11742-11751, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28933160

RESUMO

In order to examine the influence of the HA molecular composition on the partitioning of Pu, ten different kinds of humic acids (HAs) of contrasting chemical composition, collected and extracted from different soil types around the world were equilibrated with groundwater at low Pu concentrations (10-14 M). Under mildly acidic conditions (pH ∼ 5.5), 29 ± 24% of the HAs were released as colloidal organic matter (>3 kDa to <0.45 µm), yet this HA fraction accounted for a vast majority of the bound Pu, 76 ± 13% on average. In comparison, the particulate HA fraction bound only 8 ± 4% on average of the added Pu. The truly dissolved Pu fraction was typically <1%. Pu binding was strongly and positively correlated with the concentrations of organic nitrogen in both particulate (>0.45 µm) and colloidal phases in terms of activity percentage and partitioning coefficient values (logKd). Based on molecular characterization of the HAs by solid state 13C nuclear magnetic resonance (NMR) and elemental analysis, Pu binding was correlated to the concentration of carboxylate functionalities and nitrogen groups in the particulate and colloidal phases. The much greater tendency of Pu to bind to colloidal HAs than to particulate HA has implications on whether NOM acts as a Pu source or sink during natural or man-induced episodic flooding.


Assuntos
Substâncias Húmicas , Plutônio , Poluentes Radioativos do Solo , Compostos Orgânicos , Solo
9.
Environ Sci Technol ; 50(2): 625-32, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26687028

RESUMO

Colloids have been implicated in influencing the transport of actinides and other adsorbed contaminants in the subsurface, significantly increasing their mobility. Such colloid-facilitated transport can be induced by changes in groundwater chemistry that occur, for example, when high ionic strength contaminant plumes are displaced by infiltrating rainwater. We studied the transport and mobility of Th(IV), as an analogue for Pu(IV) and other tetravalent actinides [An(IV)], in saturated columns packed with a natural heterogeneous subsurface sandy sediment. As expected, decreases in ionic strength both promoted the mobilization of natural colloids and enhanced the transport of previously adsorbed Th(IV). However, colloid-facilitated transport played only a minor role in enhancing the transport of Th(IV). Instead, the enhanced transport of Th(IV) was primarily due to the pH-dependent desorption of Th(IV) caused by the change in ionic strength. In contrast, the adsorption of Th(IV) had a marked impact on the surface charge of the sandy sediment, significantly affecting the mobility of the colloids. In the absence of Th(IV), changes in ionic strength were ineffective at releasing colloids while in the presence of Th(IV), decreases in ionic strength liberated significant concentrations of colloids. Therefore, under the conditions of our experiments which mimicked acidic, high ionic strength groundwater contaminant plumes, Th(IV) had a much greater effect on colloid transport than colloids had on Th(IV) transport.


Assuntos
Elementos da Série Actinoide/análise , Coloides/química , Água Subterrânea/química , Salinidade , Adsorção , Concentração de Íons de Hidrogênio , Concentração Osmolar
10.
Environ Sci Technol ; 50(8): 4169-77, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27091553

RESUMO

Wetlands attenuate the migration of many contaminants through a wide range of biogeochemical reactions. Recent research has shown that the rhizosphere, the zone near plant roots, in wetlands is especially effective at promoting contaminant attenuation. The objective of this study was to compare the soil organic matter (OM) composition and microbial communities of a rhizosphere soil (primarily an oxidized environment) to that of the bulk wetland soil (primarily a reduced environment). The rhizosphere had elevated C, N, Mn, and Fe concentrations and total bacteria, including Anaeromyxobacter, counts (as identified by qPCR). Furthermore, the rhizosphere contained several organic molecules that were not identified in the nonrhizosphere soil (54% of the >2200 ESI-FTICR-MS identified compounds). The rhizosphere OM molecules generally had (1) greater overall molecular weights, (2) less aromaticity, (3) more carboxylate and N-containing COO functional groups, and (4) a greater hydrophilic character. These latter two OM properties typically promote metal binding. This study showed for the first time that not only the amount but also the molecular characteristics of OM in the rhizosphere may in part be responsible for the enhanced immobilization of contaminants in wetlands. These finding have implications on the stewardship and long-term management of contaminated wetlands.


Assuntos
Rizosfera , Microbiologia do Solo , Áreas Alagadas , Bactérias/genética , Metais/análise , Oxirredução , Solo/química , Poluentes do Solo/análise , South Carolina , Espectrometria de Massas por Ionização por Electrospray/métodos , Urânio
11.
Environ Sci Technol ; 49(7): 4226-34, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25741757

RESUMO

The enrichment of Cs and Rb relative to Ba, Sr, and K in three soils representing a range of soil maturities was determined to investigate the long-term sorption behavior of these elements in upland soils of the Savannah River Site (SRS). Elemental mass fractions normalized to upper continental crust (UCC) decreased in the order Cs > Rb > Ba > K > Sr in the soil fine fractions. Only the UCC-normalized amount of Cs was greater than unity. The UCC-normalized amounts in strong-acid extracts decreased as Cs > Rb > Ba > K ≈ Sr. In all three soil cores, the trends of the UCC-normalized amounts of acid-extractable metals were similar to trends of cation-exchange capacity (CEC) calculated from synchrotron-X-ray diffractometry measurements of soil mineralogy. Consequently, the relative enrichment of Cs and Rb is largely controlled by selective sorption to micaceous minerals, including hydroxy-interlayered vermiculite, that dominate the CEC. Where high clay content had caused retention of soil solution, amounts of acid extractable K, Sr, and Ba were enhanced. The retention of natural Cs by these three soils, which developed over many thousands of years, is a strong indicator that radiocesium will likewise be retained in SRS soils.


Assuntos
Silicatos de Alumínio/química , Césio/análise , Rios/química , Rubídio/análise , Poluentes Radioativos do Solo/análise , Solo/química , Radioisótopos de Césio/análise , Monitoramento de Radiação , South Carolina , Tempo (Meteorologia)
12.
Environ Sci Technol ; 49(20): 12214-22, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26404564

RESUMO

To understand better the fate and stability of immobilized uranium (U) in wetland sediments, and how intermittent dry periods affect U stability, we dosed saturated sandy wetland mesocosms planted with Scirpus acutus with low levels of uranyl acetate for 4 months before imposing a short drying and rewetting period. Concentrations of U in mesocosm effluent increased after drying and rewetting, but the cumulative amount of U released following the dry period constituted less than 1% of the total U immobilized in the soil during the 4 months prior. This low level of remobilization suggests, and XANES analyses confirm, that microbial reduction was not the primary means of U immobilization, as the U immobilized in mesocosms was primarily U(VI) rather than U(IV). Drying followed by rewetting caused a redistribution of U downward in the soil profile and to root surfaces. Although the U on roots before drying was primarily associated with minerals, the U that relocated to the roots during drying and rewetting was bound diffusely. Results show that short periods of drought conditions in a sandy wetland, which expose reduced sediments to air, may impact U distribution without causing large releases of soil-bound U to surface waters.


Assuntos
Urânio/análise , Poluentes Radioativos da Água/análise , Áreas Alagadas , Autorradiografia , Dessecação , Sedimentos Geológicos/química , Raízes de Plantas/química , Radioatividade
13.
Environ Sci Technol ; 49(5): 2823-32, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25634067

RESUMO

Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6-5.8) conditions using U L3-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U-C bond distance at ∼2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland processes, U immobilization on roots was 2 orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was reoxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.


Assuntos
Raízes de Plantas/química , Urânio/química , Áreas Alagadas , Espectroscopia por Absorção de Raios X , Sedimentos Geológicos/química , Minerais/química , Oxirredução , Rios/química , Poluentes Radioativos da Água/química
14.
Environ Sci Technol ; 49(19): 11458-67, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26313339

RESUMO

Pu concentrations in wetland surface sediments collected downstream of a former nuclear processing facility in F-Area of the Savannah River Site (SRS), USA, were ∼2.5 times greater than those measured in the associated upland aquifer sediments; similarly, the Pu concentration solid/water ratios were orders of magnitude greater in the wetland than in the low-organic matter content aquifer soils. Sediment Pu concentrations were correlated to total organic carbon and total nitrogen contents and even more strongly to hydroxamate siderophore (HS) concentrations. The HS were detected in the particulate or colloidal phases of the sediments but not in the low molecular weight fractions (<1000 Da). Macromolecules which scavenged the majority of the potentially mobile Pu were further separated from the bulk mobile organic matter fraction ("water extract") via an isoelectric focusing experiment (IEF). An electrospray ionization Fourier-transform ion cyclotron resonance ultrahigh resolution mass spectrometry (ESI FTICR-MS) spectral comparison of the IEF extract and a siderophore standard (desferrioxamine; DFO) suggested the presence of HS functionalities in the IEF extract. This study suggests that while HS are a very minor component in the sediment particulate/colloidal fractions, their concentrations greatly exceed those of ambient Pu, and HS may play an especially important role in Pu immobilization/remobilization in wetland sediments.


Assuntos
Sedimentos Geológicos/química , Ácidos Hidroxâmicos/química , Plutônio/análise , Plutônio/química , Sideróforos/química , Poluentes Radioativos do Solo/análise , Áreas Alagadas , Desferroxamina/química , Focalização Isoelétrica , Nitrogênio/química , Compostos Orgânicos/química , Sideróforos/análise , Poluentes Radioativos do Solo/química , South Carolina , Espectrometria de Massas por Ionização por Electrospray/métodos
15.
Appl Environ Microbiol ; 80(9): 2693-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24561582

RESUMO

The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I(-)), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2(-)). In the absence of Mn(2+), Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 µM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments.


Assuntos
Iodetos/metabolismo , Manganês/metabolismo , Roseobacter/metabolismo , Superóxidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Oxirredução , Roseobacter/enzimologia , Roseobacter/genética , Roseobacter/isolamento & purificação , Água do Mar/microbiologia
16.
Environ Sci Technol ; 48(23): 13985-91, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25350948

RESUMO

Plutonium (Pu), americium (Am), and curium (Cm) activities were measured in sediments from a former radioactive waste disposal basin located on the Savannah River Site, South Carolina, and in subsurface aquifer sediments collected downgradient from the basin. In situ Kd values (Pu concentration ratio of sediment/groundwater) derived from this field data and previously reported groundwater concentration data compared well to laboratory Kd values reported in the literature. Pu isotopic signatures confirmed multiple sources of Pu contamination. The ratio of (240)Pu/(239)Pu was appreciably lower for sediment samples compared to the associated groundwater. This isotopic ratio difference may be explained by the following: (1) (240)Pu produced by decay of (244)Cm may exist predominantly in high oxidation states (Pu(V)O2(+) and Pu(VI)O2(2+)) compared to Pu derived from the disposed waste effluents, and (2) oxidized forms of Pu sorb less to sediments than reduced forms of Pu. Isotope-specific Kd values calculated from measured Pu activities in the sediments and groundwater indicated that (240)Pu, which is derived primarily from the decay of (244)Cm, had a value of 10 ± 2 mL g(-1), whereas (239)Pu originating from the waste effluents discharged at the site had a value of 101 ± 8 mL g(-1). One possible explanation for the isotope-specific sorption behavior is that (240)Pu likely existed in the weaker sorbing oxidation states, +5 or +6, than (239)Pu, which likely existed in the +3 or +4 oxidation states. Consequently, remediation strategies for radioactively contaminated systems must consider not only the discharged contaminants but also their decay products. In this case, mitigation of Cm as well as Pu will be required to completely address Pu migration from the source term.


Assuntos
Amerício/química , Cúrio/química , Plutônio/química , Resíduos Radioativos/análise , Radioisótopos , Poluentes Radioativos da Água/química , Monitoramento Ambiental , Oxirredução , Rios/química , Poluentes Radioativos do Solo/química , South Carolina
17.
Environ Sci Technol ; 48(15): 8919-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24960400

RESUMO

Radioactive strontium is one of the most common radiological contaminants in groundwater and soil. Objectives of this study were to (1) evaluate Sr transport through an 11-year-long field lysimeter study and (2) quantify secondary aging effects between Sr and sediment that may need to be considered for long-term transport modeling. Batch sorption/desorption tests were conducted with (85)Sr, (88)Sr, and (90)Sr using a sediment recovered from a field lysimeter containing a glass pellet amended with high-level nuclear waste for 24 years. Sr was largely reversibly and linearly sorbed. (85)Sr sorption coefficients (Kd, concentration ratios of solids/liquids) after a 23-day contact period were about the same as the (90)Sr desorption Kd values after a 24-year contact period: sorption Kd = 32.1 ± 3.62 mL g(-1) and desorption Kd = 43.1 ± 11.4 mL g(-1). Numerical modeling of the lysimeter (90)Sr depth profile indicated that a Kd value of 32 mL g(-1) fit the data best. The Kd construct captured most of the data trends above and below the source term, except for immediately below the source where the model clearly overestimated Sr mobility. (90)Sr desorption tests suggested that the overestimated mobility may be attributed to a second, slower sorption reaction that occurs over a course of months to decades.


Assuntos
Sedimentos Geológicos/química , Resíduos Radioativos/análise , Poluentes Radioativos do Solo/análise , Radioisótopos de Estrôncio/análise , Estrôncio/análise , Poluentes Radioativos da Água/análise , Adsorção , Carbonatos/química , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Modelos Químicos , Solo/química
18.
Environ Sci Technol ; 48(19): 11218-26, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25219373

RESUMO

(129)I derived from a former radionuclide disposal basin located on the Savannah River Site (SRS) has concentrated in a wetland 600 m downstream. To evaluate temporal environmental influences on iodine speciation and mobility in this subtropical wetland environment, groundwater was collected over a three-year period (2010-2012) from a single location. Total (127)I and (129)I showed significant temporal variations, ranging from 68-196 nM for (127)I and <5-133 pCi/L for (129)I. These iodine isotopes were significantly correlated with groundwater acidity and nitrate, two parameters elevated within the contaminant plume. Additionally, (129)I levels were significantly correlated with those of (127)I, suggesting that biogeochemical controls on (127)I and (129)I are similar within the SRS aquifer/wetland system. Iodine speciation demonstrates temporal variations as well, reflecting effects from surface recharges followed by acidification of groundwater and subsequent formation of anaerobic conditions. Our results reveal a complex system where few single ancillary parameters changed in a systematic manner with iodine speciation. Instead, changes in groundwater chemistry and microbial activity, driven by surface hydrological events, interact to control iodine speciation and mobility. Future radiological risk models should consider the flux of (129)I in response to temporal changes in wetland hydrologic and chemical conditions.


Assuntos
Água Subterrânea/análise , Radioisótopos do Iodo/análise , Iodo/análise , Rios/química , Poluentes Radioativos da Água/análise , Água Subterrânea/química , Hidrologia/métodos , Isótopos de Iodo/análise , Modelos Teóricos , Fatores de Risco , South Carolina , Áreas Alagadas
19.
Environ Sci Technol ; 48(6): 3186-95, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24555528

RESUMO

To study the effects of natural organic matter (NOM) on Pu sorption, Pu(IV) and (V) were amended at environmentally relevant concentrations (10(-14) M) to two soils of contrasting particulate NOM concentrations collected from the F-Area of the Savannah River Site. More Pu(IV) than (V) was bound to soil colloidal organic matter (COM). A de-ashed humic acid (i.e., metals being removed) scavenged more Pu(IV,V) into its colloidal fraction than the original HA incorporated into its colloidal fraction, and an inverse trend was thus observed for the particulate-fraction-bound Pu for these two types of HAs. However, the overall Pu binding capacity of HA (particulate + colloidal-Pu) decreased after de-ashing. The presence of NOM in the F-Area soil did not enhance Pu fixation to the organic-rich soil when compared to the organic-poor soil or the mineral phase from the same soil source, due to the formation of COM-bound Pu. Most importantly, Pu uptake by organic-rich soil decreased with increasing pH because more NOM in the colloidal size desorbed from the particulate fraction in the elevated pH systems, resulting in greater amounts of Pu associated with the COM fraction. This is in contrast to previous observations with low-NOM sediments or minerals, which showed increased Pu uptake with increasing pH levels. This demonstrates that despite Pu immobilization by NOM, COM can convert Pu into a more mobile form.


Assuntos
Recuperação e Remediação Ambiental/métodos , Substâncias Húmicas , Plutônio/química , Poluentes Radioativos do Solo/química , Plutônio/análise , Plutônio/metabolismo , Rios , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/metabolismo , Sudeste dos Estados Unidos
20.
Environ Sci Technol ; 48(16): 9270-8, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25051143

RESUMO

The hypothesis of this study was that iron plaques formed on the roots of wetland plants and their rhizospheres create environmental conditions favorable for iron reducing bacteria that promote the in situ immobilization of uranium. Greenhouse microcosm studies were conducted using native plants (Sparganium americanum) from a wetland located on the Savannah River Site, Aiken, SC. After iron plaques were established during a 73-day period by using an anoxic Fe(II)-rich nutrient solution, a U(VI) amended nutrient solution was added to the system for an additional two months. Compared to plant-free control microcosms, microcosms containing iron plaques successfully stimulated the growth of targeted iron reducing bacteria, Geobacter spp. Their population continuously increased after the introduction of the U(VI) nutrient solution. The reduction of some of the U(VI) to U(IV) by iron reducing bacteria was deduced based on the observations that the aqueous Fe(II) concentrations increased while the U(VI) concentrations decreased. The Fe(II) produced by the iron reducing bacteria was assumed to be reoxidized by the oxygen released from the roots. Advanced spectroscopic analyses revealed that a significant fraction of the U(VI) had been reduced to U(IV) and they were commonly deposited in association with phosphorus on the iron plaque.


Assuntos
Ferro/química , Poluentes Radioativos/química , Rizosfera , Typhaceae , Urânio/química , Geobacter/metabolismo , Sedimentos Geológicos/química , Ferro/metabolismo , Oxirredução , Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rios , South Carolina , Typhaceae/metabolismo , Typhaceae/microbiologia , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA