Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nano Lett ; 24(32): 9784-9792, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38990555

RESUMO

In this work, we demonstrate direct evidence of the antiamyloid potential of Cu(II) ions against amyloid formation of insulin. The Cu(II) ions were found to efficiently disassemble the preformed amyloid nanostructures into soluble species and suppress monomer fibrillation under aggregation-prone conditions. The direct interaction of Cu(II) ions with the cross-ß structure of amyloid fibrils causes substantial disruption of both the interchain and intrachain interactions, predominantly the H-bonds and hydrophobic contacts. Further, the Cu(II) ions show a strong affinity for the aggregation-prone conformers of the protein and inhibit their spontaneous self-assembly. These results reveal the possible molecular mechanism for the antiamyloidogenic potential of Cu(II) which could be important for the development of metal-ion specific therapeutic strategies against amyloid linked complications.


Assuntos
Amiloide , Cobre , Insulina , Nanoestruturas , Cobre/química , Insulina/química , Amiloide/química , Nanoestruturas/química , Interações Hidrofóbicas e Hidrofílicas , Humanos , Ligação de Hidrogênio
2.
Biochem Biophys Res Commun ; 569: 187-192, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34256187

RESUMO

Cofilin-1, an actin dynamizing protein, forms actin-cofilin rods, which is one of the major events that exacerbates the pathophysiology of amyloidogenic diseases. Cysteine oxidation in cofilin-1 under oxidative stress plays a crucial role in the formation of these rods. Others and we have reported that cofilin-1 possesses a self-oligomerization property in vitro and in vivo under physiological conditions. However, it remains elusive if cofilin-1 itself forms amyloid-like structures. We, therefore, hypothesized that cofilin-1 might form amyloid-like assemblies, with a potential to intensify the pathophysiology of amyloid-linked diseases. We used various in silico and in vitro techniques and examined the amyloid-forming propensity of cofilin-1. The study confirms that cofilin-1 possesses an intrinsic tendency of aggregation and forms amyloid-like structures in vitro. Further, we studied the effect of cysteine oxidation on the stability and structural features of cofilin-1. Our data show that oxidation at Cys-80 renders cofilin-1 unstable, leading to a partial loss of protein structure. The results substantiate our hypothesis and establish a strong possibility that cofilin-1 aggregation might play a role in cofilin-mediated pathology and the progression of several amyloid-linked diseases.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Cofilina 1/metabolismo , Cisteína/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Amiloide/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/genética , Cofilina 1/química , Cofilina 1/genética , Simulação por Computador , Cisteína/química , Cisteína/genética , Humanos , Modelos Moleculares , Mutação , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Oxirredução , Pontuação de Propensão , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Estabilidade Proteica , Desdobramento de Proteína , Homologia de Sequência de Aminoácidos
3.
Biomacromolecules ; 22(9): 3692-3703, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34375099

RESUMO

The biological consequences associated with the conversion of soluble proteins into insoluble toxic amyloids are not only limited to the onset of neurodegenerative diseases but also to the potential health risks associated with supplements of protein therapeutic agents as well. Hence, finding inhibitors against amyloid formation is important, and natural product-based anti-amyloid compounds have gained much interest because of their higher efficacy and biocompatibility. Plumbagin has been identified as a potential natural product with multiple medical benefits; however, it remains largely unclear whether plumbagin can act against amyloid formation of proteins. Here, we show that plumbagin can effectively inhibit the temperature-induced amyloid aggregation of important proteins (insulin and serum albumin). Both experimental and computational data revealed that the presence of plumbagin in protein solutions, under aggregating conditions, promotes a direct protein-plumbagin interaction, which is predominantly stabilized by stronger H-bonds and hydrophobic interactions. Plumbagin-mediated retention of the native structures of proteins appears to play a crucial role in preventing their conversion into insoluble ß-sheet-rich amyloid aggregates. More importantly, the addition of plumbagin into a suspension of protein fibrils triggered their spontaneous disassembly, promoting the release of soluble proteins. The results highlight that a possible synergistic effect via both the stabilization of protein structures and the restriction of the monomer recruitment at the fibril growth sites could be important for the mechanism of plumbagin's anti-aggregation effect. These findings may inspire the development of plumbagin-based formulations to benefit both the prevention and treatment of amyloid-related health complications.


Assuntos
Amiloidose , Agregados Proteicos , Amiloide , Proteínas Amiloidogênicas , Humanos , Naftoquinonas
4.
Pestic Biochem Physiol ; 163: 39-50, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31973869

RESUMO

Since the exposure of organophosphate pesticides are known to cause severe health consequences, it is important to understand the molecular interaction of these pesticides metabolites with vital biomolecules, especially with the proteins. Here, considering bovine serum albumin (BSA) as a model protein, we have examined its interaction with two selected organophosphate metabolites, 3,5,6-trichloro-2-pyridinol (TCPy) and paraoxon methyl (PM). TCPy and PM are resultant metabolites of two most widely used organophosphate pesticides chlorpyrifos and parathion respectively. 1H NMR line broadening, selective spin-lattice relaxation rate measurements, saturation transfer difference (STD) NMR of both TCPy and PM were carried out in the presence and absence of BSA. The obtained values of the affinity index (A), binding constants (Ka) and thermodynamic parameters indicated strong organophosphates-BSA interaction. Further, fluorescence quenching data on TCPy-BSA and PM-BSA interactions strongly supported the NMR results, besides providing the stoichiometry of these complexes. Molecular docking analysis unraveled viable, strong hydrogen bonds and electrostatic interactions in TCPy-BSA and PM-BSA complexes. This study also revealed substantial time-dependent changes in the 1H NMR intensity of PM in the presence of BSA, which suggests faster degradation of PM with increasing protein concentration during protein-metabolite interactions. The hydrolysis is attributed to the esterase-like action of BSA. The result provides key insights into the direct interaction of the organophosphate metabolites with a biologically important carrier protein, serum albumin.


Assuntos
Soroalbumina Bovina , Sítios de Ligação , Simulação de Acoplamento Molecular , Ligação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Fluorescência
5.
Proc Natl Acad Sci U S A ; 113(6): 1546-51, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26831073

RESUMO

Polyglutamine expansion within the exon1 of huntingtin leads to protein misfolding, aggregation, and cytotoxicity in Huntington's disease. This incurable neurodegenerative disease is the most prevalent member of a family of CAG repeat expansion disorders. Although mature exon1 fibrils are viable candidates for the toxic species, their molecular structure and how they form have remained poorly understood. Using advanced magic angle spinning solid-state NMR, we directly probe the structure of the rigid core that is at the heart of huntingtin exon1 fibrils and other polyglutamine aggregates, via measurements of long-range intramolecular and intermolecular contacts, backbone and side-chain torsion angles, relaxation measurements, and calculations of chemical shifts. These experiments reveal the presence of ß-hairpin-containing ß-sheets that are connected through interdigitating extended side chains. Despite dramatic differences in aggregation behavior, huntingtin exon1 fibrils and other polyglutamine-based aggregates contain identical ß-strand-based cores. Prior structural models, derived from X-ray fiber diffraction and computational analyses, are shown to be inconsistent with the solid-state NMR results. Internally, the polyglutamine amyloid fibrils are coassembled from differently structured monomers, which we describe as a type of "intrinsic" polymorphism. A stochastic polyglutamine-specific aggregation mechanism is introduced to explain this phenomenon. We show that the aggregation of mutant huntingtin exon1 proceeds via an intramolecular collapse of the expanded polyglutamine domain and discuss the implications of this observation for our understanding of its misfolding and aggregation mechanisms.


Assuntos
Éxons/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Peptídeos/química , Sequência de Aminoácidos , Amiloide/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/ultraestrutura , Peptídeos/genética , Estrutura Secundária de Proteína , Processos Estocásticos
6.
Biochemistry ; 57(35): 5202-5209, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30080038

RESUMO

Here, we show that aromatic amino acid tyrosine, under a physiologically mimicking condition, readily forms amyloid-like entities that can effectively drive aggregation of different globular proteins and aromatic residues. Tyrosine self-assembly resulted in the formation of cross-ß rich regular fibrils as well as spheroidal oligomers. Computational data suggest intermolecular interaction between specifically oriented tyrosine molecules mediated through π-π stacking and H-bonding interactions, mimicking a cross-ß-like architecture. Both individual protein samples and mixed protein samples underwent aggregation in the presence of tyrosine fibrils, confirming the occurrence of amyloid cross-seeding. The surface of the tyrosine's amyloid like entities was predicted to trap native protein structures, preferably through hydrophobic and electrostatic interactions initiating an aggregation event. Because tyrosine is a precursor to vital neuromodulators, the inherent cross-seeding potential of the tyrosine fibrils may have direct relevance to amyloid-linked pathologies.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Nanoestruturas/química , Agregação Patológica de Proteínas , Tirosina/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Tirosina/metabolismo
7.
Biochem Biophys Res Commun ; 501(1): 158-164, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29723530

RESUMO

The multicomponent nature of neuronal plaques in Alzheimer's disease signifies the possible recruitment of non-Aß candidates during the amyloid growth of Aß peptides. Here, we show that amyloid fibrils of Aß1-40 peptide can effectively initiate amyloid formation in different globular proteins and metabolites, converting native structures into ß-sheet rich assemblies. Structural and biophysical properties of the resultant protein fibrils display amyloid like characteristic features. Viable contacts between Aß peptide's cross-ß architecture and the native structure of proteins, mediated through H-bonds and hydrophobic interactions seem crucial for the onset of amyloid cross-seeding. Results reveal the inherent cross-seeding potential of Aß amyloids to initiate amyloid formation process in proteins and metabolites and revelation of such a property may further our mechanistic understanding of amyloid pathologies.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Amiloidose/etiologia , Amiloidose/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/metabolismo , Amiloide/química , Amiloide/metabolismo , Amiloidose/patologia , Humanos , Técnicas In Vitro , Modelos Moleculares , Simulação de Acoplamento Molecular , Placa Amiloide/etiologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Agregados Proteicos , Agregação Patológica de Proteínas/etiologia , Agregação Patológica de Proteínas/patologia , Domínios e Motivos de Interação entre Proteínas
8.
Langmuir ; 33(46): 13252-13261, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29072918

RESUMO

Because uncontrolled accumulation of collagen fibrils has been implicated in a series of pathologies, inhibition of collagen fibril formation has become one of the necessary strategies to target such collagen-linked complications. The presence of hydroxyproline (Hyp) at the Y position in (Gly-X-Y)n sequence pattern of collagen is known to facilitate crucial hydrophobic and hydration-linked interactions that promote collagen fibril formation. Here, to target such Hyp-mediated interactions, we have synthesized uniform, thermostable, and hemocompatible Hyp coated gold nanoparticles (AuNPsHYP) and have examined their inhibition effect on the fibril formation of type I collagen. We found that collagen fibril formation is strongly suppressed in the presence of AuNPsHYP and no such suppression effect was observed in the presence of free Hyp and control Gly-coated nanoparticles at similar concentrations. Both isothermal titration calorimetric studies and bioinformatics analysis reveal possible interaction between Hyp and (Gly-Pro-Hyp) stretches of collagen triple-helical model peptides. Further, gold nanoparticles coated with proline (AuNPsPRO) and tryptophan (AuNPsTRP) also suppressed collagen fibril formation, suggesting their ability to interfere with aromatic-proline as well as hydrophobic interactions between collagen molecules. The Hyp molecules, when surface functionalized, are predicted to interfere with the Hyp-mediated forces that drive collagen self-assembly, and such inhibition effect may help in targeting collagen linked pathologies.


Assuntos
Nanopartículas Metálicas , Colágeno , Ouro , Hidroxiprolina , Peptídeos , Prolina , Conformação Proteica
9.
Biochemistry ; 55(24): 3345-8, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27243335

RESUMO

We have synthesized capsaicin-coated silver nanoparticles (AgNPs(Cap)) and have tested their anti-amyloid activity, considering serum albumin (BSA) as a model protein. We found that amyloid formation of BSA was strongly suppressed in the presence of AgNPs(Cap). However, isolated capsaicin and uncapped control nanoparticles did not show such an inhibition effect. Bioinformatics analysis reveals CH-π and H-bonding interactions between capsaicin and BSA in the formation of the protein-ligand complex. These results suggest the significance of surface functionalization of nanoparticles with capsaicin, which probably allows capsaicin to effectively interact with the key residues of the amyloidogenic core of BSA.


Assuntos
Amiloide/efeitos dos fármacos , Amiloide/metabolismo , Capsaicina/farmacologia , Nanopartículas Metálicas/química , Soroalbumina Bovina/efeitos dos fármacos , Soroalbumina Bovina/metabolismo , Prata/química , Amiloide/química , Animais , Antipruriginosos/farmacologia , Bovinos , Modelos Moleculares , Tamanho da Partícula , Soroalbumina Bovina/química , Propriedades de Superfície
10.
Amino Acids ; 47(12): 2551-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26193769

RESUMO

Here, we have strategically synthesized stable gold (AuNPs(Tyr), AuNPs(Trp)) and silver (AgNPs(Tyr)) nanoparticles which are surface functionalized with either tyrosine or tryptophan residues and have examined their potential to inhibit amyloid aggregation of insulin. Inhibition of both spontaneous and seed-induced aggregation of insulin was observed in the presence of AuNPs(Tyr), AgNPs(Tyr), and AuNPs(Trp) nanoparticles. These nanoparticles also triggered the disassembly of insulin amyloid fibrils. Surface functionalization of amino acids appears to be important for the inhibition effect since isolated tryptophan and tyrosine molecules did not prevent insulin aggregation. Bioinformatics analysis predicts involvement of tyrosine in H-bonding interactions mediated by its C=O, -NH2, and aromatic moiety. These results offer significant opportunities for developing nanoparticle-based therapeutics against diseases related to protein aggregation.


Assuntos
Amiloide/química , Ouro/química , Antagonistas da Insulina/química , Insulina/química , Nanopartículas Metálicas/química , Triptofano/química , Tirosina/química , Aminoácidos/química , Animais , Bovinos , Biologia Computacional , Ligação de Hidrogênio , Microscopia Eletrônica de Transmissão , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Prata/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Eur Biophys J ; 44(1-2): 69-76, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25528374

RESUMO

Capsaicin is a versatile plant product which has been ascribed several health benefits and anti-inflammatory and analgesic properties. We have investigated the effect of capsaicin on the molecular stability, self-assembly, and fibril stability of type-I collagen. It was found that capsaicin suppresses collagen fibril formation, increases the stability of collagen fibers in tendons, and has no effect on the molecular stability of collagen. Turbidity assay data show that capsaicin does not promote disassembly of collagen fibrils. However, capsaicin moderately protects collagen fibrils from enzymatic degradation. Computational studies revealed the functions of the aromatic group and amide region of capsaicin in the collagen-capsaicin interaction. The results may have significant implications for capsaicin-based therapeutics that target excess collagen accumulation-linked pathology, for example thrombosis, fibrosis, and sclerosis.


Assuntos
Capsaicina/farmacologia , Colágenos Fibrilares/química , Sequência de Aminoácidos , Animais , Capsaicina/química , Colágenos Fibrilares/metabolismo , Masculino , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Ligação Proteica , Estabilidade Proteica , Proteólise , Ratos , Ratos Wistar
12.
Biochemistry ; 53(51): 8001-4, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25494036

RESUMO

The question of how an aggregating protein can influence aggregation of other proteins located in its vicinity is particularly significant because many proteins coexist in cells. We demonstrate in vitro coaggregation and cross-seeding of lysozyme, bovine serum albumin, insulin, and cytochrome c during their amyloid formation. The coaggregation process seems to be more dependent on the temperature-induced intermediate species of these proteins and less dependent on their sequence identities. Because amyloid-linked inclusions and plaques are recognized as multicomponent entities originating from aggregation of the associated protein, these findings may add new insights into the mechanistic understanding of amyloid-related pathologies.


Assuntos
Amiloide/biossíntese , Amiloide/química , Agregação Patológica de Proteínas/metabolismo , Sequência de Aminoácidos , Amiloide/ultraestrutura , Amiloidose/etiologia , Amiloidose/metabolismo , Animais , Bovinos , Dicroísmo Circular , Citocromos c/química , Citocromos c/genética , Citocromos c/metabolismo , Humanos , Insulina/química , Insulina/genética , Insulina/metabolismo , Cinética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Muramidase/química , Muramidase/genética , Muramidase/metabolismo , Agregados Proteicos , Homologia de Sequência de Aminoácidos , Soroalbumina Bovina/química , Soroalbumina Bovina/genética , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência
13.
Biochemistry ; 53(42): 6653-66, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25280367

RESUMO

In Huntington's disease, expansion of a polyglutamine (polyQ) domain in the huntingtin (htt) protein leads to misfolding and aggregation. There is much interest in the molecular features that distinguish monomeric, oligomeric, and fibrillar species that populate the aggregation pathway and likely differ in cytotoxicity. The mechanism and rate of aggregation are greatly affected by the domains flanking the polyQ segment within exon 1 of htt. A "protective" C-terminal proline-rich flanking domain inhibits aggregation by inducing polyproline II structure (PPII) within an extended portion of polyQ. The N-terminal flanking segment (htt(NT)) adopts an α-helical structure as it drives aggregation, helps stabilize oligomers and fibrils, and is seemingly integral to their supramolecular assembly. Via solid-state nuclear magnetic resonance (ssNMR), we probe how, in the mature fibrils, the htt flanking domains impact the polyQ domain and in particular the localization of the ß-structured amyloid core. Using residue-specific and uniformly labeled samples, we find that the amyloid core occupies most of the polyQ domain but ends just prior to the prolines. We probe the structural and dynamical features of the remarkably abrupt ß-sheet to PPII transition and discuss the potential connections to certain htt-binding proteins. We also examine the htt(NT) α-helix outside the polyQ amyloid core. Despite its presumed structural and demonstrated stabilizing roles in the fibrils, quantitative ssNMR measurements of residue-specific dynamics show that it undergoes distinct solvent-coupled motion. This dynamical feature seems reminiscent of molten-globule-like α-helix-rich features attributed to the nonfibrillar oligomeric species of various amyloidogenic proteins.


Assuntos
Amiloide/química , Proteínas do Tecido Nervoso/química , Peptídeos/química , Éxons , Humanos , Proteína Huntingtina , Proteínas do Tecido Nervoso/genética , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Estrutura Secundária de Proteína
14.
Biochem Biophys Res Commun ; 448(4): 480-4, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24802405

RESUMO

Both collagen and amyloidogenic proteins have an inherent ability to undergo a self-assembly process leading to formation of supramolecular structures. Though our understanding of collagen-amyloid link is very poor, a few experimental evidences have indicated the protective nature of collagen against amyloid fibril formation. To further our understanding of collagen-amyloid relationship, we have explored the role of type I collagen on amyloid-aggregation of lysozyme. Thioflavin-T assay data indicated strong inhibition of both spontaneous and seeded aggregation of lysozyme by collagen. Both chemical and thermal denaturation experiments have showed increased lysozyme stability in the presence of collagen. However, the presence of collagen did not alter lysozyme activity. These findings confirm that type I collagen is capable of blocking or interfering with the amyloid aggregation of lysozyme, and the results may have significant implications for the design of collagen based therapeutics against aggregation of disease linked amyloidogenic proteins.


Assuntos
Amiloide/metabolismo , Colágeno Tipo I/metabolismo , Muramidase/metabolismo , Amiloide/química , Animais , Galinhas , Colágeno Tipo I/química , Estabilidade Enzimática , Feminino , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Muramidase/química , Conformação Proteica , Multimerização Proteica , Ratos
15.
J Phys Chem Lett ; 15(31): 8032-8041, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39083215

RESUMO

Human lysozyme undergoes a phase-separation process to form insoluble amyloid-architects that cause several pathologies including systemic amyloidosis. Here we have tailored 6-gingerol by extending its molecular framework with active functional groups to specifically target lysozyme phase-transition events. Aggregation assay revealed that tailored 6-gingerol with 4-aromatic moieties (MTV4) substantially suppressed the conversion of the lysozyme low-density liquid phase (LDLP) to solid-phase structured amyloids. The data obtained from biophysical, computational, and microscopic imaging tools suggest direct intervention of MTV4 with the liquid-liquid phase separation. The CD data suggest that MTV4 was able to retain the native conformation of lysozyme. Both biomolecular and computational data reveal the interference of MTV4 with the aggregation-prone hydrophobic stretches within the lysozyme, thereby retaining the native structure and reversing the misfolded intermediates to active monomers. Also, MTV4 was able to induce rapid dissolution of preformed-toxic amyloid fibrils. These results reinforce the importance of the aromatic-aromatic interaction in preventing human lysozyme phase separation.


Assuntos
Amiloide , Catecóis , Álcoois Graxos , Muramidase , Muramidase/química , Muramidase/metabolismo , Álcoois Graxos/química , Humanos , Catecóis/química , Amiloide/química , Amiloide/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Transição de Fase , Agregados Proteicos , Separação de Fases
16.
Adv Colloid Interface Sci ; 331: 103205, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38875805

RESUMO

Lysozyme, a well-known bacteriolytic enzyme, exhibits a fascinating yet complex behavior when it comes to protein aggregation. Under certain conditions, this enzyme undergoes flexible transformation, transitioning from partially unfolded intermediate units of native conformers into complex cross-ß-rich nano fibrillar amyloid architectures. Formation of such lysozyme amyloids has been implicated in a multitude of pathological and medical severities, like hepatic dysfunction, hepatomegaly, splenic rupture as well as spleen dysfunction, nephropathy, sicca syndrome, renal dysfunction, renal amyloidosis, and systemic amyloidosis. In this comprehensive review, we have attempted to provide in-depth insights into the aggregating behavior of lysozyme across a spectrum of variables, including concentrations, temperatures, pH levels, and mutations. Our objective is to elucidate the underlying mechanisms that govern lysozyme's aggregation process and to unravel the complex interplay between its structural attributes. Moreover, this work has critically examined the latest advancements in the field, focusing specifically on novel strategies and systems, that have been implemented to delay or inhibit the lysozyme amyloidogenesis. Apart from this, we have tried to explore and advance our fundamental understanding of the complex processes involved in lysozyme aggregation. This will help the research community to lay a robust foundation for screening, designing, and formulating targeted anti-amyloid therapeutics offering improved treatment modalities and interventions not only for lysozyme-linked amyloidopathy but for a wide range of amyloid-related disorders.


Assuntos
Amiloide , Muramidase , Nanoestruturas , Transição de Fase , Muramidase/química , Muramidase/metabolismo , Amiloide/química , Amiloide/metabolismo , Amiloide/antagonistas & inibidores , Humanos , Nanoestruturas/química , Animais , Amiloidose/metabolismo , Amiloidose/patologia , Amiloidose/tratamento farmacológico
17.
ACS Appl Mater Interfaces ; 16(15): 18268-18284, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564419

RESUMO

The essential amino acid histidine plays a central role in the manifestation of several metabolic processes, including protein synthesis, enzyme-catalysis, and key biomolecular interactions. However, excess accumulation of histidine causes histidinemia, which shows brain-related medical complications, and the molecular mechanism of such histidine-linked complications is largely unknown. Here, we show that histidine undergoes a self-assembly process, leading to the formation of amyloid-like cytotoxic and catalytically active nanofibers. The kinetics of histidine self-assembly was favored in the presence of Mg(II) and Co(II) ions. Molecular dynamics data showed that preferential noncovalent interactions dominated by H-bonds between histidine molecules facilitate the formation of histidine nanofibers. The histidine nanofibers induced amyloid cross-seeding reactions in several proteins and peptides including pathogenic Aß1-42 and brain extract components. Further, the histidine nanofibers exhibited oxidase activity and enhanced the oxidation of neurotransmitters. Cell-based studies confirmed the cellular internalization of histidine nanofibers in SH-SY5Y cells and subsequent cytotoxic effects through necrosis and apoptosis-mediated cell death. Since several complications including behavioral abnormality, developmental delay, and neurological disabilities are directly linked to abnormal accumulation of histidine, our findings provide a foundational understanding of the mechanism of histidine-related complications. Further, the ability of histidine nanofibers to catalyze amyloid seeding and oxidation reactions is equally important for both biological and materials science research.


Assuntos
Nanofibras , Nanoestruturas , Neuroblastoma , Humanos , Histidina , Peptídeos/química , Nanofibras/química , Amiloide/química , Peptídeos beta-Amiloides/química
18.
Int J Biol Macromol ; 235: 123629, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36773869

RESUMO

Curcumin is an important food additive that shows multiple medical-benefits including anticarcinogenic, anti-inflammatory, antibiotic and antiamyloid properties. However, understanding the mechanism of curcumin-mediated effects becomes rather complicated since it has low bio-viability and it undergoes autooxidation, influenced by temperature, pH and buffer. We find that curcumin's antiamyloid-potential is not primarily due to curcumin alone, rather due to a synergistic action of curcumin and its autooxidized-products generated during inhibition reactions. In physiological buffer curcumin undergoes thermally induced autooxidation and yields stable compounds which can synergistically work for both inhibition of amyloid aggregation and promotion of amyloid-disaggregation into soluble protein species. Curcumin also showed substantial inhibition effect against coaggregation of different food proteins. Curcumin's strong affinity for the hydrophobic moieties of the aggregation-prone partially-folded insulin structures seems crucial for the inhibition mechanism. Further, autooxidized curcumin products were found to protect UV-induced protein damage. The results provide conceptual foundations highlighting the link between chemistry and antiamyloid-activity of curcumin and may inspire curcumin-based therapeutics against amyloidogenesis.


Assuntos
Curcumina , Curcumina/química , Amiloide/química , Proteínas Amiloidogênicas , Temperatura , Anti-Inflamatórios
19.
ACS Chem Neurosci ; 14(24): 4274-4281, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37962955

RESUMO

Recent discoveries on the self-assembly of aromatic amino acids into amyloid-like neurotoxic nanostructures have initiated a quest to decode the molecular mechanisms for the initiation of neurodegeneration. Moreover, the multicomponent nature of the amyloid deposits still questions the existing and well-defined amyloid cascade hypothesis. Hence, deciphering the neurotoxicity of amyloid-like nanostructures of aromatic amino acids becomes crucial for understanding the etiology of amyloidogenesis. Here, we demonstrate the cellular internalization and consequential damaging effects of self-assembled amyloid-like tryptophan nanostructures on human neuroblastoma cells. The cell-damaging potential of tryptophan nanostructure seems to be facilitated via ROS generation, necrosis and apoptosis mediated cell death. Further, tryptophan nanostructures were found to be seeding competent conformers, which triggered aggressive aggregation of brain extract components. The early stage intermediate nanostructures possess a higher cross-seeding efficacy than the seeding potential of the matured tryptophan fibrils. In addition to the cell-damaging and cross-seeding effects, tryptophan fibrils were found to catalyze oxidation of neuromodulator dopamine. These findings add more insights into the specific role of tryptophan self-assembly during the pathogenesis of hypertryptophanemia and other amyloid-associated neurodegenerative complications.


Assuntos
Amiloide , Triptofano , Humanos , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Encéfalo/metabolismo , Aminoácidos Aromáticos
20.
J Mater Chem B ; 11(36): 8765-8774, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37661927

RESUMO

Covalent tagging of fluorophores is central to the mechanistic understanding of important biological processes including protein-protein interaction and protein aggregation. Hence, studies on fluorophore-tagged peptides help in elucidating the molecular mechanism of amyloidogenesis, its cellular internalization, and crosstalk potential. Despite the many advantages the covalently tagged proteins offer, difficulties such as expensive and tedious synthesis and purification protocols have become a matter of concern. Importantly, covalently tagged fluorophores could introduce structural constraints, which may influence the conformation of the monomeric and aggregated forms of proteins. Here, we describe a robust-yet-simple method to make fluorescent-amyloid nanofibers through a coassembly-reaction route that does not alter the aggregation kinetics and the characteristic ß-sheet-conformers of resultant nanofibers. Fluorescent amyloid nanofibers derived from insulin, lysozyme, Aß1-42, and metabolites were successfully fabricated in our study. Importantly, the incorporated fluorophores exhibited remarkable stability, remaining intact without leaching even after undergoing serial dilutions and prolonged storage periods. This method enables monitoring of cellular internalization of the fluorescent-amyloid-nanofibers and the detection of FRET-signals during interfibrillar interactions. This simple and affordable protocol may significantly help amyloid researchers working on both in vitro and animal models.


Assuntos
Nanofibras , Animais , Proteínas Amiloidogênicas , Corantes Fluorescentes , Insulina , Insulina Regular Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA