RESUMO
BACKGROUND: Nutrition is important to the management and relief of the symptoms in menstrual disorders. This study aims to investigate the relationship between menstrual disorders and specific foods and nutrient intake in women. METHODS: Five-hundred-nine menstruating women participated in the study. The questionnaire form was created by the researchers via Google Forms and distributed in online applications (WhatsApp, Instagram etc.). The questionnaire consists of 5 sections, including demographic data, declared anthropometric measurements (height (m or cm), weight (g or kg)), questions about eating habits, menstruation status, and 24-hour food consumption. Statistical analysis was made with SPSS 23; nutrient analysis of food consumption was made using BeBiS 9.0. RESULTS: It was found that the body mass index (BMI) of healthy participants was higher than women with menstrual disorders. Women with menstrual disorders have lower intake of protein, vitamin K, vitamin B3, vitamin B5 and sodium compared with healthy women. All participants have a higher intake of vitamin B3, sodium, phosphorus, and manganese, and have a lower intake of other nutrients compared with the national adequate intake. CONCLUSION: Our findings showed that women with menstrual disorders consume more high-sugar food/beverages and have inadequate nutrients intake.
Assuntos
Índice de Massa Corporal , Comportamento Alimentar , Distúrbios Menstruais , Humanos , Feminino , Estudos Transversais , Adulto , Distúrbios Menstruais/epidemiologia , Adulto Jovem , Inquéritos e Questionários , Dieta/estatística & dados numéricos , Dieta/métodos , Menstruação/fisiologia , Estado NutricionalRESUMO
The relationship between damage to the liver and spleen by aging and the immune response status in these two organs, which are anatomically and immunologically interconnected, is unknown. The authors investigated the histopathological, ultrastructural, and immunological effects of aging in young and aged fibrotic mice by using an experimental model. Four groups were planned, with 10 mice in each experimental group. The levels of fibrosis and ultrastructural destruction in the liver were determined by α-SMA staining and TEM analysis. Expression levels of immunity genes (Il2, Il4, Il6, Il10, Il12, Il17, Tnf, Ifng, Tgfb1, Gata3, Rorc, Tbx21, Foxp3, Ccl2, Ccr2, Cxcr3, Pf4, Cxcl10) were carried out by qRT-PCR. While structural disorders were detected in the mitochondria of aged healthy group, cellular destruction in the fibrosis-induced elderly group was at a dramatic level. Fibrosis induction in aged mice caused an elevation in the expression of chemokines (CCl2, CXCL10, CCR2) and cytokine (IL-17a) genes that induce autoinflammatory response in the liver. Unlike the cellular pathology and genes activated in fibrosis in youth and the natural occurrence of fibrosis with aging, induction of fibrosis during aging causes deterioration in the liver and expression of genes responsible for autoimmunity in both the liver and spleen.
Assuntos
Envelhecimento , Cirrose Hepática , Fígado , Baço , Animais , Baço/patologia , Camundongos , Fígado/patologia , Cirrose Hepática/patologia , Cirrose Hepática/genética , Cirrose Hepática/imunologia , Masculino , Expressão GênicaRESUMO
PURPOSE: Lower impacted third molar surgery is a very common oral-maxillofacial surgical procedure, which has complications such as facial swelling, pain, and trismus. This clinical trial aimed to compare the intensity of postoperative morbidity (pain, facial swelling, and trismus) following the third molar surgery performed using saline irrigation at different temperatures (4 °C, 10 °C, or 25 °C). MATERIALS AND METHODS: This double-blind, single-center, split-mouth, randomized prospective clinical trial was conducted among 48 systemically and periodontally healthy patients who had bilaterally asymptomatic mandibular third molars. Patients were randomly allocated into 2 groups (n = 24) according to the temperature of the saline used. In each patient, one impacted third molar was determined as the test group (4 °C or 10 °C saline irrigation) and the other impacted third molar as the control group (25 °C saline irrigation). Trismus and swelling were evaluated on the 1st, 3rd, and 7th days postoperatively. Pain perception by visual analog scale (VAS) and the total number of analgesics taken during the 7 postoperative days were recorded. Data were analyzed using the Shapiro-Wilk test, the chi-square test, one-way analysis of variance, Duncan test, the Kruskal-Wallis test, the Dunn test, and the Friedman test (P < .05). RESULTS: Forty-eight patients (28 females, 20 males) with a mean age of 24.6 ± 3.8 years were included in the study. The duration of operations was similar. VAS values of test groups [test group 1 (4 °C): 4.0, test group 1 (10 °C): 8.0] and the number of analgesics taken [test group 1 (4 °C): 0, test group 1 (10°) C): 3] were significantly lower (P < .001) than control groups (VAS, control group 1: 13.0, control group 2: 15.5, number of analgesic taken, control group 1: 5.5, control group 2: 4.0). Significant differences were found between the test groups in VAS values and the number of analgesics taken (P < .001). Also, the lowest trismus and facial swelling values were detected in the 4 °C test group at all time points (P < .001). CONCLUSION: In the impacted third molar surgery, the use of cooled saline irrigation during bone removal may be a simple, inexpensive, and effective method for reducing early postoperative complaints.
Assuntos
Dente Serotino , Dente Impactado , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Dente Serotino/cirurgia , Trismo/etiologia , Trismo/prevenção & controle , Temperatura , Dor Pós-Operatória/prevenção & controle , Estudos Prospectivos , Extração Dentária/efeitos adversos , Dente Impactado/cirurgia , Dente Impactado/complicações , Analgésicos , Edema/etiologia , Edema/prevenção & controleRESUMO
Background Kidney injury is characterized by persisting inflammation and fibrosis, yet mechanisms by which inflammatory signals drive fibrogenesis remain poorly defined.Methods RNA sequencing of fibrotic kidneys from patients with CKD identified a metabolic gene signature comprising loss of mitochondrial and oxidative phosphorylation gene expression with a concomitant increase in regulators and enzymes of glycolysis under the control of PGC1α and MYC transcription factors, respectively. We modeled this metabolic switch in vivo, in experimental murine models of kidney injury, and in vitro in human kidney stromal cells (SCs) and human kidney organoids.Results In mice, MYC and the target genes thereof became activated in resident SCs early after kidney injury, suggesting that acute innate immune signals regulate this transcriptional switch. In vitro, stimulation of purified human kidney SCs and human kidney organoids with IL-1ß recapitulated the molecular events observed in vivo, inducing functional metabolic derangement characterized by increased MYC-dependent glycolysis, the latter proving necessary to drive proliferation and matrix production. MYC interacted directly with sequestosome 1/p62, which is involved in proteasomal degradation, and modulation of p62 expression caused inverse effects on MYC expression. IL-1ß stimulated autophagy flux, causing degradation of p62 and accumulation of MYC. Inhibition of the IL-1R signal transducer kinase IRAK4 in vivo or inhibition of MYC in vivo as well as in human kidney organoids in vitro abrogated fibrosis and reduced tubular injury.Conclusions Our findings define a connection between IL-1ß and metabolic switch in fibrosis initiation and progression and highlight IL-1ß and MYC as potential therapeutic targets in tubulointerstitial diseases.
Assuntos
Injúria Renal Aguda/patologia , Interleucina-1beta/farmacologia , Rim/citologia , Rim/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Injúria Renal Aguda/metabolismo , Animais , Autofagia/efeitos dos fármacos , Azepinas/farmacologia , Proteínas de Transporte/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Progressão da Doença , Matriz Extracelular/metabolismo , Fibrose , Glicólise/efeitos dos fármacos , Humanos , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Organoides , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Hormônios Tireóideos/metabolismo , Triazóis/farmacologia , Proteínas de Ligação a Hormônio da TireoideRESUMO
Connective tissue growth factor (CTGF), a matrix-associated protein with four distinct cytokine binding domains, has roles in vasculogenesis, wound healing responses, and fibrogenesis and is upregulated in fibroblasts and myofibroblasts in disease. Here, we investigated the role of CTGF in fibrogenic cells. In mice, tissue-specific inducible overexpression of CTGF by kidney pericytes and fibroblasts had no bearing on nephrogenesis or kidney homeostasis but exacerbated inflammation and fibrosis after ureteral obstruction. These effects required the WNT receptor LDL receptor-related protein 6 (LRP6). Additionally, pericytes isolated from these mice became hypermigratory and hyperproliferative on overexpression of CTGF. CTGF is cleaved in vivo into distinct domains. Treatment with recombinant domain 1, 1+2 (N terminus), or 4 (C terminus) independently activated myofibroblast differentiation and wound healing responses in cultured pericytes, but domain 4 showed the broadest profibrotic activity. Domain 4 exhibited low-affinity binding to LRP6 in in vitro binding assays, and inhibition of LRP6 or critical signaling cascades downstream of LRP6, including JNK and WNT/ß-catenin, inhibited the biologic activity of domain 4. Administration of blocking antibodies specifically against CTGF domain 4 or recombinant Dickkopf-related protein-1, an endogenous inhibitor of LRP6, effectively inhibited inflammation and fibrosis associated with ureteral obstruction in vivo Therefore, domain 4 of CTGF and the WNT signaling pathway are important new targets in fibrosis.
Assuntos
Fator de Crescimento do Tecido Conjuntivo/fisiologia , Nefropatias/etiologia , Rim/patologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Animais , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Fibroblastos , Fibrose/etiologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , PericitosRESUMO
The identification of the cellular origins of myofibroblasts has led to the discovery of novel pathways that potentially drive myofibroblast perpetuation in disease. Here, we further investigated the role of innate immune signaling pathways in this process. In mice, renal injury-induced activation of pericytes, which are myofibroblast precursors attached to endothelial cells, led to upregulated expression of TNF receptor superfamily member 12a, also known as fibroblast growth factor-inducible 14 (Fn14), by these cells. In live rat kidney slices, administration of the Fn14 ligand, TNF-related weak inducer of apoptosis (TWEAK), promoted pericyte-dependent vasoconstriction followed by pericyte detachment from capillaries. In vitro, administration of TWEAK activated and differentiated pericytes into cytokine-producing myofibroblasts, and further activated established myofibroblasts in a manner requiring canonical and noncanonical NF-κB signaling pathways. Deficiency of Fn14 protected mouse kidneys from fibrogenesis, inflammation, and associated vascular instability after in vivo injury, and was associated with loss of NF-κB signaling. In a genetic model of spontaneous CKD, therapeutic delivery of anti-TWEAK blocking antibodies attenuated disease progression, preserved organ function, and increased survival. These results identify the TWEAK-Fn14 signaling pathway as an important factor in myofibroblast perpetuation, fibrogenesis, and chronic disease progression.
Assuntos
Nefropatias/etiologia , Rim/patologia , Miofibroblastos/fisiologia , Receptores do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais , Fatores de Necrose Tumoral/fisiologia , Animais , Citocina TWEAK , Progressão da Doença , Fibrose/etiologia , Camundongos , Receptor de TWEAKRESUMO
TNF-like weak inducer of apoptosis (TWEAK) is a growth factor for bipotent liver progenitors that express its receptor, fibroblast growth factor-inducible 14 (Fn14), a TNF receptor superfamily member. Accumulation of Fn14(+) progenitors occurs in severe acute alcoholic steatohepatitis (ASH) and correlates with acute mortality. In patients with severe ASH, inhibition of TNF-α increases acute mortality. The aim of this study was to determine whether deletion of Fn14 improves the outcome of liver injury in alcohol-consuming mice. Wild-type (WT) and Fn14 knockout (KO) mice were fed control high-fat Lieber deCarli diet or high-fat Lieber deCarli diet with 2% alcohol (ETOH) and injected intraperitoneally with CCl4 for 2 wk to induce liver injury. Mice were euthanized 3 or 10 days after CCl4 treatment. Survival was assessed. Liver tissues were analyzed for cell death, inflammation, proliferation, progenitor accumulation, and fibrosis by quantitative RT-PCR, immunoblot, hydroxyproline content, and quantitative immunohistochemistry. During liver injury, Fn14 expression, apoptosis, inflammation, hepatocyte replication, progenitor and myofibroblast accumulation, and fibrosis increased in WT mice fed either diet. Mice fed either diet expressed similar TWEAK/Fn14 levels, but ETOH-fed mice had higher TNF-α expression. The ETOH-fed group developed more apoptosis, inflammation, fibrosis, and regenerative responses. Fn14 deletion did not reduce hepatic TNF-α expression but improved all injury parameters in mice fed the control diet. In ETOH-fed mice, Fn14 deletion inhibited TNF-α induction and increased acute mortality, despite improvement in liver injury. Fn14 mediates wound-healing responses that are necessary to survive acute liver injury during alcohol exposure.
Assuntos
Fígado Gorduroso Alcoólico/metabolismo , Fígado/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Doença Aguda , Animais , Apoptose , Tetracloreto de Carbono , Proliferação de Células , Modelos Animais de Doenças , Etanol , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/genética , Fígado Gorduroso Alcoólico/patologia , Hidroxiprolina/metabolismo , Mediadores da Inflamação/metabolismo , Fígado/patologia , Cirrose Hepática Alcoólica/etiologia , Cirrose Hepática Alcoólica/metabolismo , Cirrose Hepática Alcoólica/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores do Fator de Necrose Tumoral/deficiência , Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais , Receptor de TWEAK , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , CicatrizaçãoRESUMO
UNLABELLED: Liver repair involves phenotypic changes in hepatic stellate cells (HSCs) and reactivation of morphogenic signaling pathways that modulate epithelial-to-mesenchymal/mesenchymal-to-epithelial transitions, such as Notch and Hedgehog (Hh). Hh stimulates HSCs to become myofibroblasts (MFs). Recent lineage tracing studies in adult mice with injured livers showed that some MFs became multipotent progenitors to regenerate hepatocytes, cholangiocytes, and HSCs. We studied primary HSC cultures and two different animal models of fibrosis to evaluate the hypothesis that activating the Notch pathway in HSCs stimulates them to become (and remain) MFs through a mechanism that involves an epithelial-to-mesenchymal-like transition and requires cross-talk with the canonical Hh pathway. We found that when cultured HSCs transitioned into MFs, they activated Hh signaling, underwent an epithelial-to-mesenchymal-like transition, and increased Notch signaling. Blocking Notch signaling in MFs/HSCs suppressed Hh activity and caused a mesenchymal-to-epithelial-like transition. Inhibiting the Hh pathway suppressed Notch signaling and also induced a mesenchymal-to-epithelial-like transition. Manipulating Hh and Notch signaling in a mouse multipotent progenitor cell line evoked similar responses. In mice, liver injury increased Notch activity in MFs and Hh-responsive MF progeny (i.e., HSCs and ductular cells). Conditionally disrupting Hh signaling in MFs of bile-duct-ligated mice inhibited Notch signaling and blocked accumulation of both MF and ductular cells. CONCLUSIONS: The Notch and Hedgehog pathways interact to control the fate of key cell types involved in adult liver repair by modulating epithelial-to-mesenchymal-like/mesenchymal-to-epithelial-like transitions.
Assuntos
Proteínas Hedgehog/fisiologia , Células Estreladas do Fígado/fisiologia , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem da Célula , Dipeptídeos/farmacologia , Genótipo , Células Estreladas do Fígado/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/fisiologia , Fenótipo , Proteínas Serrate-JaggedRESUMO
BACKGROUND: Alcohol consumption promotes hepatocellular carcinoma (HCC). The responsible mechanisms are not well understood. Hepatocarcinogenesis increases with age and is enhanced by factors that impose a demand for liver regeneration. Because alcohol is hepatotoxic, habitual alcohol ingestion evokes a recurrent demand for hepatic regeneration. The alcohol-preferring (P) rat model mimics the level of alcohol consumption by humans who habitually abuse alcohol. Previously, we showed that habitual heavy alcohol ingestion amplified age-related hepatocarcinogenesis in P rats, with over 80% of alcohol-consuming P rats developing HCCs after 18 months of alcohol exposure, compared with only 5% of water-drinking controls. METHODS: Herein, we used quantitative real-time PCR and quantitative immunocytochemistry to compare liver tissues from alcohol-consuming P rats and water-fed P rat controls after 6, 12, or 18 months of drinking. We aimed to identify potential mechanisms that might underlie the differences in liver cancer formation and hypothesized that chronic alcohol ingestion would activate Hedgehog (HH), a regenerative signaling pathway that is overactivated in HCC. RESULTS: Chronic alcohol ingestion amplified age-related degenerative changes in hepatocytes, but did not cause appreciable liver inflammation or fibrosis even after 18 months of heavy drinking. HH signaling was also enhanced by alcohol exposure, as evidenced by increased levels of mRNAs encoding HH ligands, HH-regulated transcription factors, and HH target genes. Immunocytochemistry confirmed increased alcohol-related accumulation of HH ligand-producing cells and HH-responsive target cells. HH-related regenerative responses were also induced in alcohol-exposed rats. Three of these processes (i.e., deregulated progenitor expansion, the reverse Warburg effect, and epithelial-to-mesenchymal transitions) are known to promote cancer growth in other tissues. CONCLUSIONS: Alcohol-related changes in Hedgehog signaling and resultant deregulation of liver cell replacement might promote hepatocarcinogenesis.
Assuntos
Carcinogênese/efeitos dos fármacos , Depressores do Sistema Nervoso Central/efeitos adversos , Etanol/efeitos adversos , Proteínas Hedgehog/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Animais , Transição Epitelial-Mesenquimal , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Distribuição Aleatória , RatosRESUMO
OBJECTIVE: Vascular remodelling during liver damage involves loss of healthy liver sinusoidal endothelial cell (LSEC) phenotype via capillarisation. Hedgehog (Hh) signalling regulates vascular development and increases during liver injury. This study therefore examined its role in capillarisation. DESIGN: Primary LSEC were cultured for 5 days to induce capillarisation. Pharmacological, antibody-mediated and genetic approaches were used to manipulate Hh signalling. Effects on mRNA and protein expression of Hh-regulated genes and capillarisation markers were evaluated by quantitative reverse transcription PCR and immunoblot. Changes in LSEC function were assessed by migration and tube forming assay, and gain/loss of fenestrae was examined by electron microscopy. Mice with acute or chronic liver injury were treated with Hh inhibitors; effects on capillarisation were assessed by immunohistochemistry. RESULTS: Freshly isolated LSEC expressed Hh ligands, Hh receptors and Hh ligand antagonist Hhip. Capillarisation was accompanied by repression of Hhip and increased expression of Hh-regulated genes. Treatment with Hh agonist further induced expression of Hh ligands and Hh-regulated genes, and upregulated capillarisation-associated genes; whereas Hh signalling antagonist or Hh ligand neutralising antibody each repressed expression of Hh target genes and capillarisation markers. LSEC isolated from Smo(loxP/loxP) transgenic mice that had been infected with adenovirus expressing Cre-recombinase to delete Smoothened showed over 75% knockdown of Smoothened. During culture, Smoothened-deficient LSEC had inhibited Hh signalling, less induction of capillarisation-associated genes and retention of fenestrae. In mice with injured livers, inhibiting Hh signalling prevented capillarisation. CONCLUSIONS: LSEC produce and respond to Hh ligands, and use Hh signalling to regulate complex phenotypic changes that occur during capillarisation.
Assuntos
Ação Capilar , Células Endoteliais/fisiologia , Proteínas Hedgehog/fisiologia , Fígado/citologia , Animais , Western Blotting , Movimento Celular , Células Cultivadas , Doença Crônica , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Imuno-Histoquímica , Hepatopatias/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologiaRESUMO
BACKGROUND & AIMS: The pathogenesis of cirrhosis, a disabling outcome of defective liver repair, involves deregulated accumulation of myofibroblasts derived from quiescent hepatic stellate cells (HSCs), but the mechanisms that control transdifferentiation of HSCs are poorly understood. We investigated whether the Hedgehog (Hh) pathway controls the fate of HSCs by regulating metabolism. METHODS: Microarray, quantitative polymerase chain reaction, and immunoblot analyses were used to identify metabolic genes that were differentially expressed in quiescent vs myofibroblast HSCs. Glycolysis and lactate production were disrupted in HSCs to determine if metabolism influenced transdifferentiation. Hh signaling and hypoxia-inducible factor 1α (HIF1α) activity were altered to identify factors that alter glycolytic activity. Changes in expression of genes that regulate glycolysis were quantified and localized in biopsy samples from patients with cirrhosis and liver samples from mice following administration of CCl(4) or bile duct ligation. Mice were given systemic inhibitors of Hh to determine if they affect glycolytic activity of the hepatic stroma; Hh signaling was also conditionally disrupted in myofibroblasts to determine the effects of glycolytic activity. RESULTS: Transdifferentiation of cultured, quiescent HSCs into myofibroblasts induced glycolysis and caused lactate accumulation. Increased expression of genes that regulate glycolysis required Hh signaling and involved induction of HIF1α. Inhibitors of Hh signaling, HIF1α, glycolysis, or lactate accumulation converted myofibroblasts to quiescent HSCs. In diseased livers of animals and patients, numbers of glycolytic stromal cells were associated with the severity of fibrosis. Conditional disruption of Hh signaling in myofibroblasts reduced numbers of glycolytic myofibroblasts and liver fibrosis in mice; similar effects were observed following administration of pharmacologic inhibitors of Hh. CONCLUSIONS: Hedgehog signaling controls the fate of HSCs by regulating metabolism. These findings might be applied to diagnosis and treatment of patients with cirrhosis.
Assuntos
Transdiferenciação Celular/genética , Regulação da Expressão Gênica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Células Estreladas do Fígado/metabolismo , Miofibroblastos/metabolismo , Transdução de Sinais/genética , Actinas/genética , Actinas/metabolismo , Animais , Ductos Biliares , Tetracloreto de Carbono , Células Cultivadas , Perfilação da Expressão Gênica , Glicólise/genética , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/enzimologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Ácido Láctico/metabolismo , Ligadura , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias , Miofibroblastos/enzimologia , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , RNA Mensageiro/metabolismo , Ratos , Fatores de TempoRESUMO
OBJECTIVE: Immune responses are important in dictating non-alcoholic steatohepatitis (NASH) outcome. We previously reported that upregulation of hedgehog (Hh) and osteopontin (OPN) occurs in NASH, that Hh-regulated accumulation of natural killer T (NKT) cells promotes hepatic stellate cell (HSC) activation, and that cirrhotic livers harbour large numbers of NKT cells. DESIGN: The hypothesis that activated NKT cells drive fibrogenesis during NASH was evaluated by assessing if NKT depletion protects against NASH fibrosis; identifying the NKT-associated fibrogenic factors; and correlating plasma levels of the NKT cell-associated factor OPN with fibrosis severity in mice and humans. RESULTS: When fed methionine-choline-deficient (MCD) diets for 8 weeks, wild type (WT) mice exhibited Hh pathway activation, enhanced OPN expression, and NASH-fibrosis. Ja18-/- and CD1d-/- mice which lack NKT cells had significantly attenuated Hh and OPN expression and dramatically less fibrosis. Liver mononuclear cells (LMNCs) from MCD diet fed WT mice contained activated NKT cells, generated Hh and OPN, and stimulated HSCs to become myofibroblasts; neutralising these factors abrogated the fibrogenic actions of WT LMNCs. LMNCs from NKT-cell-deficient mice were deficient in fibrogenic factors, failing to activate collagen gene expression in HSCs. Human NASH livers with advanced fibrosis contained more OPN and Hh protein than those with early fibrosis. Plasma levels of OPN mirrored hepatic OPN expression and correlated with fibrosis severity. CONCLUSION: Hepatic NKT cells drive production of OPN and Hh ligands that promote fibrogenesis during NASH. Associated increases in plasma levels of OPN may provide a biomarker of NASH fibrosis.
Assuntos
Fígado Gorduroso/metabolismo , Proteínas Hedgehog/fisiologia , Células T Matadoras Naturais/imunologia , Osteopontina/metabolismo , Animais , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Fibrose/imunologia , Fibrose/metabolismo , Fibrose/fisiopatologia , Células Estreladas do Fígado/fisiologia , Humanos , Imuno-Histoquímica , Fígado/metabolismo , Ativação Linfocitária , Camundongos , Hepatopatia Gordurosa não Alcoólica , Osteopontina/sangue , Transdução de SinaisRESUMO
This study evaluated the anti-inflammatory effect of platelet-rich fibrin (PRF) applied to the extraction socket after impacted mandibular third molar surgery with subjective and objective parameters. Forty-eight patients with impacted wisdom teeth in bilateral and similar positions were included in the study. The control group was formed with the standard surgery and the PRF group was formed with local PRF application in addition to standard procedure (n = 96). The anti-inflammatory activity of PRF on postoperative 2nd and 7th days was evaluated subjectively by clinical parameters and objectively by biochemical parameters. Postoperative 2nd- and 7th-day follow-up data of pain, edema, and trismus in the PRF group were found to be statistically significantly lower. Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were found to be statistically significantly lower in the PRF group than the control in the postoperative 2nd-day follow-up period (p < 0.001). There was no statistically significant difference in interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) parameters when the PRF group and the control group were compared in both follow-up periods (p > 0.05). The study has demonstrated the effectiveness of locally applied PRF after ITM surgery via clinical parameters and objective data. The quantitative analysis of CRP and ERS can be an effective parameter in determining the amount of inflammation after ITM surgery.
RESUMO
IL-1ß is believed to play a pathogenic role in the development of pancreatitis. Expression of human IL-1ß in pancreatic acinar cells produces chronic pancreatitis, characterized by extensive intrapancreatic inflammation, atrophy, and fibrosis. To determine if activation of trypsinogen is important in the pathogenesis of chronic pancreatitis in this model, we crossed IL-1ß transgenic [Tg(IL1ß)] mice with mice expressing a trypsin inhibitor that is normally produced in rat pancreatic acinar cells [pancreatic secretory trypsin inhibitor (PTSI) I]. We previously demonstrated that transgenic expression of PSTI-I [Tg(Psti1)] increased pancreatic trypsin inhibitor activity by 190%. Tg(IL1ß) mice were found to have marked pancreatic inflammation, characterized by histological changes, including acinar cell loss, inflammatory cell infiltration, and fibrosis, as well as elevated myeloperoxidase activity and elevated pancreatic trypsin activity, as early as 6 wk of age. In contrast to Tg(IL1ß) mice, pancreatitis was significantly less severe in dual-transgenic [Tg(IL1ß)-Tg(Psti1)] mice expressing IL-1ß and PSTI-I in pancreatic acinar cells. These findings indicate that overexpression of PSTI-I reduces the severity of pancreatitis and that pancreatic trypsin activity contributes to the pathogenesis of an inflammatory model of chronic pancreatitis.
Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Interleucina-1beta/biossíntese , Pâncreas/metabolismo , Pancreatite Crônica/prevenção & controle , Actinas/biossíntese , Amilases/metabolismo , Animais , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Masculino , Camundongos , Pâncreas/patologia , Pancreatite/patologia , Pancreatite Crônica/patologia , Ratos , Tripsina/metabolismo , Inibidor da Tripsina Pancreática de Kazal , Inibidores da Tripsina/biossíntese , Inibidores da Tripsina/fisiologiaRESUMO
UNLABELLED: Nonalcoholic steatohepatitis (NASH) is a leading cause of cirrhosis. Recently, we showed that NASH-related cirrhosis is associated with Hedgehog (Hh) pathway activation. The gene encoding osteopontin (OPN), a profibrogenic extracellular matrix protein and cytokine, is a direct transcriptional target of the Hh pathway. Thus, we hypothesize that Hh signaling induces OPN to promote liver fibrosis in NASH. Hepatic OPN expression and liver fibrosis were analyzed in wild-type (WT) mice, Patched-deficient (Ptc(+/-) ) (overly active Hh signaling) mice, and OPN-deficient mice before and after feeding methionine and choline-deficient (MCD) diets to induce NASH-related fibrosis. Hepatic OPN was also quantified in human NASH and nondiseased livers. Hh signaling was manipulated in cultured liver cells to assess direct effects on OPN expression, and hepatic stellate cells (HSCs) were cultured in medium with different OPN activities to determine effects on HSC phenotype. When fed MCD diets, Ptc(+/-) mice expressed more OPN and developed worse liver fibrosis (P < 0.05) than WT mice, whereas OPN-deficient mice exhibited reduced fibrosis (P < 0.05). In NASH patients, OPN was significantly up-regulated and correlated with Hh pathway activity and fibrosis stage. During NASH, ductular cells strongly expressed OPN. In cultured HSCs, SAG (an Hh agonist) up-regulated, whereas cyclopamine (an Hh antagonist) repressed OPN expression (P < 0.005). Cholangiocyte-derived OPN and recombinant OPN promoted fibrogenic responses in HSCs (P < 0.05); neutralizing OPN with RNA aptamers attenuated this (P < 0.05). CONCLUSION: OPN is Hh-regulated and directly promotes profibrogenic responses. OPN induction correlates with Hh pathway activity and fibrosis stage. Therefore, OPN inhibition may be beneficial in NASH.
Assuntos
Proteínas Hedgehog/fisiologia , Cirrose Hepática/etiologia , Osteopontina/genética , Animais , Linhagem Celular , Deficiência de Colina , Dieta , Fígado Gorduroso/fisiopatologia , Células Estreladas do Fígado , Humanos , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Osteopontina/biossíntese , Osteopontina/deficiência , Regulação para Cima , Alcaloides de Veratrum/farmacologiaRESUMO
The prognostication of head and neck squamous cell carcinoma (HNSCC) is largely based upon the tumor size and location and the presence of lymph node metastases. Here we show that gene expression patterns from 60 HNSCC samples assayed on cDNA microarrays allowed categorization of these tumors into four distinct subtypes. These subtypes showed statistically significant differences in recurrence-free survival and included a subtype with a possible EGFR-pathway signature, a mesenchymal-enriched subtype, a normal epithelium-like subtype, and a subtype with high levels of antioxidant enzymes. Supervised analyses to predict lymph node metastasis status were approximately 80% accurate when tumor subsite and pathological node status were considered simultaneously. This work represents an important step toward the identification of clinically significant biomarkers for HNSCC.
Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/classificação , Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/classificação , Neoplasias de Cabeça e Pescoço/genética , Adulto , Idoso , Carcinoma de Células Escamosas/metabolismo , Feminino , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Análise de Sequência com Séries de Oligonucleotídeos , Valor Preditivo dos Testes , Prognóstico , Transdução de Sinais , Taxa de SobrevidaRESUMO
Trans-differentiation of quiescent hepatic stellate cells (Q-HSCs), which exhibit epithelial and adipocytic features, into myofibroblastic-HSC (MF-HSCs) is a key event in liver fibrosis. Culture models demonstrated that Hedgehog (Hh) pathway activation is required for transition of epithelioid/adipocytic Q-HSCs into MF-HSCs. Hh signaling inhibits adiposity and promotes epithelial-to-mesenchymal transitions (EMTs). Leptin (anti-adipogenic, pro-EMT factor) promotes HSC trans-differentiation and liver fibrosis, suggesting that the pathways may interact to modulate cell fate. This study aimed to determine whether leptin activates Hh signaling and whether this is required for the fibrogenic effects of leptin. Cultures of primary HSCs from lean and fa/fa rats with an inherited ObRb defect were examined. Inhibitors of PI3K/Akt, JAK/STAT, and Hh signaling were used to delineate how ObRb activation influenced Hh signaling and HSC trans-differentiation. Fibrogenesis was compared in wild type and db/db mice (impaired ObRb function) to assess the profibrotic role of leptin. The results demonstrate that leptin-ObR interactions activate Hh signaling with the latter necessary to promote trans-differentiation. Leptin-related increases in Hh signaling required ObR induction of PI3K/Akt, which was sufficient for leptin to repress the epithelioid/adipocytic program. Leptin-mediated induction of JAK/STAT was required for mesenchymal gene expression. Leptin-ObRb interactions were not necessary for HSC trans-differentiation to occur in vitro or in vivo but are important because liver fibrogenesis was attenuated in db/db mice. These findings reveal that leptin activates Hh signaling to alter gene expression programs that control cell fate and have important implications for liver fibrosis and other leptin-regulated processes involving EMTs, including development, obesity, and cancer metastasis.
Assuntos
Proteínas Hedgehog/metabolismo , Células Estreladas do Fígado/metabolismo , Leptina/metabolismo , Miofibroblastos/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Animais , Western Blotting , Diferenciação Celular , Células Cultivadas , Células Epiteliais/metabolismo , Proteínas Hedgehog/genética , Leptina/genética , Masculino , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos Obesos , Miofibroblastos/citologia , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Receptores para Leptina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
UNLABELLED: Distinct mechanisms are believed to regulate growth of the liver during fetal development and after injury in adults, because the former relies on progenitors and the latter generally involves replication of mature hepatocytes. However, chronic liver injury in adults increases production of Hedgehog (Hh) ligands, developmental morphogens that control progenitor cell fate and orchestrate various aspects of tissue construction during embryogenesis. This raises the possibility that similar Hh-dependent mechanisms also might regulate adult liver regeneration. The current analysis of murine liver regeneration after 70% partial hepatectomy (PH), an established model of adult liver regeneration, demonstrated that PH induced production of Hh ligands and activated Hh signaling in liver cells. Treatment with a specific Hh signaling inhibitor interfered with several key components of normal liver regeneration, significantly inhibiting progenitor responses, matrix remodeling, proliferation of hepatocytes and ductular cells, and restoration of liver mass. These global inhibitory effects on liver regeneration dramatically reduced survival after PH. CONCLUSION: Mechanisms that mediate liver organogenesis, such as Hh pathway activation, are retained and promote reconstruction of adult livers after injury.
Assuntos
Proteínas Hedgehog/fisiologia , Hepatectomia , Transdução de Sinais/fisiologia , Animais , Feminino , Proteínas Hedgehog/antagonistas & inibidores , Hepatopatias/patologia , Regeneração Hepática/fisiologia , Masculino , Camundongos , Alcaloides de Veratrum/farmacologiaRESUMO
UNLABELLED: Hepatic accumulation of myofibroblastic hepatic stellate cells (MF-HSCs) is pivotal in the pathogenesis of cirrhosis. Two events are necessary for MF-HSCs to accumulate in damaged livers: transition of resident, quiescent hepatic stellate cells (Q-HSCs) to MF-HSCs and expansion of MF-HSC numbers through increased proliferation and/or reduced apoptosis. In this study, we identified two novel mediators of MF-HSC accumulation: Ras-related C3 botulinum toxin substrate 1 (Rac1) and Hedgehog (Hh). It is unclear whether Rac1 and Hh interact to regulate the accumulation of MF-HSCs. We evaluated the hypothesis that Rac1 promotes activation of the Hh pathway, thereby stimulating signals that promote transition of Q-HSCs into MF-HSCs and enhance the viability of MF-HSCs. Using both in vitro and in vivo model systems, Rac1 activity was manipulated through adenoviral vector-mediated delivery of constitutively active or dominant-negative rac1. Rac1-transgenic mice with targeted myofibroblast expression of a mutated human rac1 transgene that produces constitutively active Rac1 were also examined. Results in all models demonstrated that activating Rac1 in HSC enhanced Hh signaling, promoted acquisition/maintenance of the MF-HSC phenotype, increased MF-HSC viability, and exacerbated fibrogenesis. Conversely, inhibiting Rac1 with dominant-negative rac1 reversed these effects in all systems examined. Pharmacologic manipulation of Hh signaling demonstrated that profibrogenic actions of Rac1 were mediated by its ability to activate Hh pathway-dependent mechanisms that stimulated myofibroblastic transition of HSCs and enhanced MF-HSC viability. CONCLUSION: These findings demonstrate that interactions between Rac1 and the Hh pathway control the size of MF-HSC populations and have important implications for the pathogenesis of cirrhosis.
Assuntos
Fibroblastos/patologia , Proteínas Hedgehog/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/patologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Masculino , Fenótipo , Ratos , Ratos Sprague-Dawley , Proteínas rac1 de Ligação ao GTP/agonistas , Proteínas rac1 de Ligação ao GTP/genéticaRESUMO
UNLABELLED: Liver inflammation is greater in nonalcoholic steatohepatitis (NASH) than steatosis, suggesting that immune responses contribute to nonalcoholic fatty liver disease (NAFLD) progression. Livers normally contain many natural killer T (NKT) cells that produce factors that modulate inflammatory and fibrogenic responses. Such cells are relatively depleted in steatosis, but their status in more advanced NAFLD is uncertain. We hypothesized that NKT cells accumulate and promote fibrosis progression in NASH. We aimed to determine if livers become enriched with NKT cells during NASH-related fibrosis; identify responsible mechanisms; and assess if NKT cells stimulate fibrogenesis. NKT cells were analyzed in wildtype mice and Patched-deficient (Ptc(+/-)) mice with an overly active Hedgehog (Hh) pathway, before and after feeding methionine choline-deficient (MCD) diets to induce NASH-related fibrosis. Effects of NKT cell-derived factors on hepatic stellate cells (HSC) were examined and fibrogenesis was evaluated in CD1d-deficient mice that lack NKT cells. NKT cells were quantified in human cirrhotic and nondiseased livers. During NASH-related fibrogenesis in wildtype mice, Hh pathway activation occurred, leading to induction of factors that promoted NKT cell recruitment, retention, and viability, plus liver enrichment with NKT cells. Ptc(+/-) mice accumulated more NKT cells and developed worse liver fibrosis; CD1d-deficient mice that lack NKT cells were protected from fibrosis. NKT cell-conditioned medium stimulated HSC to become myofibroblastic. Liver explants were 2-fold enriched with NKT cells in patients with non-NASH cirrhosis, and 4-fold enriched in patients with NASH cirrhosis. CONCLUSION: Hh pathway activation leads to hepatic enrichment with NKT cells that contribute to fibrosis progression in NASH.