Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18328, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884632

RESUMO

Finite element (FE) models have been widely used to investigate knee joint biomechanics. Most of these models have been developed to study adult knees, neglecting pediatric populations. In this study, an atlas-based approach was employed to develop subject-specific FE models of the knee for eight typically developing pediatric individuals. Initially, validation simulations were performed at four passive tibiofemoral joint (TFJ) flexion angles, and the resulting TFJ and patellofemoral joint (PFJ) kinematics were compared to corresponding patient-matched measurements derived from magnetic resonance imaging (MRI). A neuromusculoskeletal-(NMSK)-FE pipeline was then used to simulate knee biomechanics during stance phase of walking gait for each participant to evaluate model simulation of a common motor task. Validation simulations demonstrated minimal error and strong correlations between FE-predicted and MRI-measured TFJ and PFJ kinematics (ensemble average of root mean square errors < 5 mm for translations and < 4.1° for rotations). The FE-predicted kinematics were strongly correlated with published reports (ensemble average of Pearson's correlation coefficients (ρ) > 0.9 for translations and ρ > 0.8 for rotations), except for TFJ mediolateral translation and abduction/adduction rotation. For walking gait, NMSK-FE model-predicted knee kinematics, contact areas, and contact pressures were consistent with experimental reports from literature. The strong agreement between model predictions and experimental reports underscores the capability of sequentially linked NMSK-FE models to accurately predict pediatric knee kinematics, as well as complex contact pressure distributions across the TFJ articulations. These models hold promise as effective tools for parametric analyses, population-based clinical studies, and enhancing our understanding of various pediatric knee injury mechanisms. They also support intervention design and prediction of surgical outcomes in pediatric populations.


Assuntos
Articulação do Joelho , Articulação Patelofemoral , Adulto , Humanos , Criança , Análise de Elementos Finitos , Articulação do Joelho/patologia , Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Fenômenos Biomecânicos , Amplitude de Movimento Articular
2.
Artigo em Inglês | MEDLINE | ID: mdl-32596223

RESUMO

During dental trauma, periodontal ligament (PDL) contributes to the stability of the tooth-PDL-bone structure. When a dental implant is inserted into the bone, the dental implant-bone construct will be more prone to mechanical damage, caused by impact loading, than the tooth-PDL-bone construct. In spite of the prevalence of such traumas, the behavioral differences between these two constructs have not been well-understood yet. The main goal of this study was to compare the momentum transferred to the tooth-PDL-bone and dental implant-bone constructs under impact loading. First, mechanical impact tests were performed on six canine mandibles of intact (N = 3) and implanted (N = 3) specimens using a custom-made drop tower apparatus, from release heights of 1, 2, and 3 cm. Next, computed tomography-based finite element models were developed for both constructs, and the transferred momenta were calculated. The experimental results indicated that, for the release heights of 1, 2, and 3 cm, the linear momenta transferred to the dental implant-bone construct were 33.1, 31.0, and 27.5% greater than those of the tooth-PDL-bone construct, respectively. Moreover, results of finite element simulations were in agreement with those of the experimental tests (error <7.5%). This work tried to elucidate the effects of impact loading on the dental implant-bone and tooth-PDL-bone constructs using both in-vitro tests and validated in-silico simulations. The findings can be employed to modify design of the current generation of dental implants, based on the lessons one can take from the biomechanical behavior of a natural tooth structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA