Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017740

RESUMO

The purpose of this study was to investigate the effects of acute nitrate (NO3-)-rich beetroot juice ingestion on explosive and high-intensity exercise performance, oral microbiota composition, and cognitive flexibility (i.e., function), before and after maximal intermittent running exercise. Fifteen women team-sport athletes were assigned in a randomized, double-blind, crossover design to consume concentrated NO3--depleted beetroot juice (PL; 0.1 mmol NO3-) and NO3--rich beetroot juice (BR; 12.0 mmol NO3-) 2.5 h prior to performing a battery of exercise performance tasks and cognitive testing before and after the Yo-Yo intermittent recovery level 1 (YYIR1) running test. Resting plasma [NO3-] and plasma nitrite ([NO2-]) were elevated following BR (P < 0.001). BR did not impact global composition or relative abundance of taxa in the oral microbiome (P > 0.05) or cognitive flexibility before or after exercise (P > 0.05). There was no significant difference in performance during 20-m (PRE, PL: 4.38 ± 0.27 vs. BR: 4.38 ± 0.32 s; POST, PL: 4.45 ± 0.29 vs. BR: 4.43 ± 0.35 s) and 10-m sprints (PRE, PL 2.78 ± 0.15 vs. BR 2.79 ± 0.18 s; POST, PL: 2.82 ± 0.16 vs. BR: 2.81 ± 0.19 s), isokinetic handgrip dynamometry, medicine ball throw, horizontal countermovement jump, or YYIR1 (PL: 355 ± 163 m vs. BR: 368 ± 184 m) between BR and PL (P > 0.05). These findings indicate that acute dietary NO3- may not influence the oral microbiome, explosive and high-intensity exercise performance, or cognitive function in women team-sport athletes.

2.
Nitric Oxide ; 138-139: 105-119, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37438201

RESUMO

Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability and its potential ergogenic effects across various population groups. This review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular peak power output in healthy adults, athletes, older adults and some clinical populations. Effect sizes were calculated for peak power output and absolute and/or relative nitrate doses were considered where applicable. There was no relationship between the effect sizes of peak power output change following nitrate supplementation and when nitrate dosage when considered in absolute or relative terms. Areas for further research are also recommended including a focus on nitrate dosing regimens that optimize nitric oxide bioavailability for enhancing peak power at times of increased muscular work in a variety of healthy and disease populations.

3.
Nitric Oxide ; 136-137: 33-47, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244391

RESUMO

Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability its potential ergogenic effects across various population groups. This narrative review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular power output in healthy adults, athletes, older adults and some clinical populations. Areas for further research are also recommended including a focus individualized nitrate dosing regimens to optimize nitric oxide bioavailability and to promote muscular power enhancements in different populations.


Assuntos
Beta vulgaris , Nitratos , Humanos , Idoso , Óxido Nítrico/metabolismo , Suplementos Nutricionais , Contração Muscular , Disponibilidade Biológica , Músculo Esquelético/metabolismo , Método Duplo-Cego
4.
Nutrients ; 15(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37299456

RESUMO

This systematic review and meta-analysis investigated the influence of dietary nitrate supplementation on resistance exercise performance according to the PRISMA guidelines. Searches were conducted on MEDLINE, PubMed, ScienceDirect, Scopus and SPORTDiscus databases up to April 2023. Inclusion criteria were adult resistance-trained males who supplemented with a nitrate-rich supplement and nitrate-deficient placebo to assess repetitions-to-failure (RTF), peak power, mean power, peak velocity, and/or mean velocity during back squat and bench press exercise. A random effects model was performed on six studies and showed that nitrate supplementation improved RTF (standardized mean difference [SMD]: 0.43, 95% confidence intervals [95% CI]: 0.156 to 0.699, p = 0.002), mean power (SMD: 0.40, 95% CI: 0.127 to 0.678, p = 0.004), and mean velocity (SMD: 0.57, 95% CI: 0.07 to 1.061, p = 0.025) but had no effect on peak power (SMD: 0.204, 95% CI: -0.004 to 0.411, p = 0.054) or peak velocity (SMD: 0.00, 95% CI: -0.173 to 0.173, p = 1.000) when back squat and bench press were combined. Subgroup analyses revealed that back squats were more likely to be enhanced and that a dosing regimen may influence the efficacy of nitrate supplementation. Overall, nitrate supplementation had a small beneficial effect on some aspects of resistance exercise performance, but there were limited studies available and the variability was large. Additional studies that focus on upper and lower body resistance exercise and nitrate dosage are required to elucidate the efficacy of dietary nitrate supplementation on resistance exercise performance.


Assuntos
Força Muscular , Nitratos , Masculino , Adulto , Humanos , Nitratos/farmacologia , Músculo Esquelético , Terapia por Exercício , Suplementos Nutricionais
5.
Front Nutr ; 10: 1217192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485396

RESUMO

This study tested the hypothesis that co-ingesting nitrate (NO3-)-rich beetroot juice (BR) and pomegranate powder (POM) would enhance neuromuscular performance during vertical countermovement jumps, explosive kneeling countermovement push-ups, and back squats compared to BR ingestion alone. Fifteen recreationally-active males were assigned in a double-blind, randomized, crossover design, to supplement in 3 conditions: (1) NO3--depleted beetroot juice (PL; 0.10 mmol NO3-) with two empty gelatin capsules; (2) NO3--rich beetroot juice (BR; 11.8 mmol NO3-) with two empty gelatin capsules, and (3) BR with 1,000 mg of POM powder in two capsules (BR + POM). Participants completed 5 countermovement jumps and 5 kneeling countermovement push-ups interspersed by 1 min of recovery. Subsequently, participants performed 2 sets of 2 × 70% one-repetition maximum back squats, interspersed by 2 min of recovery. Plasma [NO3-] and nitrite ([NO2-]) were elevated following BR and BR + POM compared with PL and POM (p < 0.001) with no differences between BR and BR + POM (p > 0.05) or PL and POM (p > 0.05). Peak power during countermovement jumps increased by 3% following BR compared to BR + POM (88.50 ± 11.46 vs. 85.80 ± 10.14 W/Kg0.67, p = 0.009) but not PL (88.50 ± 11.46 vs. 85.58 ± 10.05 W/Kg0.67, p = 0.07). Neuromuscular performance was not different between conditions during explosive kneeling push-ups and back squats (p > 0.05). These data provide insight into the efficacy of NO3- to modulate explosive resistance exercise performance and indicate that supplementing with BR alone or combined with POM has limited ergogenic potential on resistance exercise. Furthermore, caution is required when combining BR with POM, as this could compromise aspects of resistance exercise performance, at least when compared to BR ingested independently.

6.
Nutrients ; 14(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36145080

RESUMO

The purpose of the current study was to assess the effects of acute and short-term nitrate (NO3−)-rich beetroot juice (BR) supplementation on performance outcomes and muscle oxygenation during bench press and back squat exercise. Fourteen recreationally active males were assigned in a randomized, double-blind, crossover design to supplement for 4 days in two conditions: (1) NO3−-depleted beetroot juice (PL; 0.10 mmol NO3− per day) and (2) BR (11.8 mmol NO3− per day). On days 1 and 4 of the supplementation periods, participants completed 2 sets of 2 × 70%1RM interspersed by 2 min of recovery, followed by one set of repetitions-to-failure (RTF) at 60%1RM for the determination of muscular power, velocity, and endurance. Quadriceps and pectoralis major tissue saturation index (TSI) were measured throughout exercise. Plasma [NO3−] and nitrite ([NO2−]) were higher after 1 and 4 days of supplementation with BR compared to PL (p < 0.05). Quadriceps and pectoralis major TSI were not different between conditions (p > 0.05). The number of RTF in bench press was 5% greater after acute BR ingestion compared to PL (PL: 23 ± 4 vs. BR: 24 ± 5, p < 0.05). There were no differences between BR and PL for RTF for back squat or power and velocity for back squat or bench press (p > 0.05). These data improve understanding on the ergogenic potential of BR supplementation during resistance exercise.


Assuntos
Beta vulgaris , Treinamento Resistido , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Masculino , Nitratos/farmacologia , Nitritos , Dióxido de Nitrogênio , Óxidos de Nitrogênio , Músculo Quadríceps
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA