RESUMO
The Arabidopsis phosphate transporter PHT4;1 was previously localized to the chloroplast thylakoid membrane. Here we investigated the physiological consequences of the absence of PHT4;1 for photosynthesis and plant growth. In standard growth conditions, two independent Arabidopsis knockout mutant lines displayed significantly reduced leaf size and biomass but normal phosphorus content. When mutants were grown in high-phosphate conditions, the leaf phosphorus levels increased and the growth phenotype was suppressed. Photosynthetic measurements indicated that in the absence of PHT4;1 stromal phosphate was reduced to levels that limited ATP synthase activity. This resulted in reduced CO2 fixation and accumulation of soluble sugars, limiting plant growth. The mutants also displayed faster induction of non-photochemical quenching than the wild type, in line with the increased contribution of ΔpH to the proton-motive force across thylakoids. Small-angle neutron scattering showed a smaller lamellar repeat distance, whereas circular dichroism spectroscopy indicated a perturbed long-range order of photosystem II (PSII) complexes in the mutant thylakoids. The absence of PHT4;1 did not alter the PSII repair cycle, as indicated by wild-type levels of phosphorylation of PSII proteins, inactivation and D1 protein degradation. Interestingly, the expression of genes for several thylakoid proteins was downregulated in the mutants, but the relative levels of the corresponding proteins were either not affected or could not be discerned. Based on these data, we propose that PHT4;1 plays an important role in chloroplast phosphate compartmentation and ATP synthesis, which affect plant growth. It also maintains the ionic environment of thylakoids, which affects the macro-organization of complexes and induction of photoprotective mechanisms.
Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Tilacoides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Fosfato/genética , Fotossíntese/genética , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismoRESUMO
Nonphotosynthetic plastids are important sites for the biosynthesis of starch, fatty acids, and amino acids. The uptake and subsequent use of cytosolic ATP to fuel these and other anabolic processes would lead to the accumulation of inorganic phosphate (Pi) if not balanced by a Pi export activity. However, the identity of the transporter(s) responsible for Pi export is unclear. The plastid-localized Pi transporter PHT4;2 of Arabidopsis (Arabidopsis thaliana) is expressed in multiple sink organs but is nearly restricted to roots during vegetative growth. We identified and used pht4;2 null mutants to confirm that PHT4;2 contributes to Pi transport in isolated root plastids. Starch accumulation was limited in pht4;2 roots, which is consistent with the inhibition of starch synthesis by excess Pi as a result of a defect in Pi export. Reduced starch accumulation in leaves and altered expression patterns for starch synthesis genes and other plastid transporter genes suggest metabolic adaptation to the defect in roots. Moreover, pht4;2 rosettes, but not roots, were significantly larger than those of the wild type, with 40% greater leaf area and twice the biomass when plants were grown with a short (8-h) photoperiod. Increased cell proliferation accounted for the larger leaf size and biomass, as no changes were detected in mature cell size, specific leaf area, or relative photosynthetic electron transport activity. These data suggest novel signaling between roots and leaves that contributes to the regulation of leaf size.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Plastídeos/metabolismo , Amido/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sequência de Bases , Transporte Biológico , Carbono/metabolismo , Proliferação de Células , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Coelhos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Análise de Sequência de DNA , Transdução de SinaisRESUMO
The anion transporter 1 (ANTR1) from Arabidopsis thaliana, homologous to the mammalian members of the solute carrier 17 (SLC17) family, is located in the chloroplast thylakoid membrane. When expressed heterologously in Escherichia coli, ANTR1 mediates a Na(+)-dependent active transport of inorganic phosphate (P(i)). The aim of this study was to identify amino acid residues involved in P(i) binding and translocation by ANTR1 and in the Na(+) dependence of its activity. A three-dimensional structural model of ANTR1 was constructed using the crystal structure of glycerol 3-phosphate/phosphate antiporter from E. coli as a template. Based on this model and multiple sequence alignments, five highly conserved residues in plant ANTRs and mammalian SLC17 homologues have been selected for site-directed mutagenesis, namely, Arg-120, Ser-124, and Arg-201 inside the putative translocation pathway and Arg-228 and Asp-382 exposed at the cytoplasmic surface of the protein. The activities of the wild-type and mutant proteins have been analyzed using expression in E. coli and radioactive P(i) transport assays and compared with bacterial cells carrying an empty plasmid. The results from P(i)- and Na(+)-dependent kinetics indicate the following: (i) Arg-120 and Arg-201 may be important for binding and translocation of the substrate; (ii) Ser-124 may function as a transient binding site for Na(+) ions in close proximity to the periplasmic side; (iii) Arg-228 and Asp-382 may participate in interactions associated with protein conformational changes required for full transport activity. Functional characterization of ANTR1 should provide useful insights into the function of other plant and mammalian SLC17 homologous transporters.