Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Food Sci Technol ; 58(2): 680-691, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33568862

RESUMO

This study sought to assess the ideal conditions under which hydrolysate can be produced from the split gill mushroom proteins through the microbial protease, Alcalase. The research employed a central composite design and response surface methodology. Three specific parameters were varied for the purposes of the experimental process, while a fixed pH value of 8 was used in all cases. The variables were hydrolysis temperature (set as 45 °C, 50 °C, or 55 °C), hydrolysis time (set as 60 min, 120 min, or 180 min), and the ratio of enzyme to substrate (set as 2%, 4%, or 6% w/v). The variables under investigation exert a significant influence upon degree of hydrolysis (DH) in addition to 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging activity (p < 0.05). Fractionation of the hydrolysate was accomplished using molecular weight (MW) cut-off membranes, while the greatest radical-scavenging capability was observed in the < 0.65 kDa fraction. The MW < 0.65 kDa fraction underwent separation through RP-HPLC in order to create five sub-fractions. Among these, the greatest ABTS radical-scavenging capability was observed in the F5 sub-fraction, which was therefore chosen to undergo additional examination using quadrupole-time-of-flight-electron spin induction-mass spectrometry-based de novo peptide sequencing. Via this process it was possible to determine five antioxidant peptides. Furthermore, the MW < 0.65 kDa fraction was able to demonstrating cellular antioxidant activity in the context of a human intestinal cancer cell line (HT-29). The extent of this activity was shown to depend upon the concentration levels of the peptide.

2.
J Food Sci Technol ; 58(2): 752-763, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33568869

RESUMO

In order to examine bee pollen hydrolysates to assess their anticancer and antioxidant properties, hydrolysis of bee pollen was first performed using three different commercially available enzymes: Alcalase®, Neutrase®, and Flavourzyme®. The study used DPPH and ABTS assay to evaluate the antioxidant properties of the hydrolysates obtained from bee pollen. All of the tested hydrolysates demonstrated antioxidant activity, while hydrolysate based on Alcalase® offered a high value for IC50 and was therefore chosen for further separation into five sub-fractions via ultrafiltration. The greatest antioxidant activity was presented by the MW < 0.65 kDa fraction, which achieved an IC50 value of 0.39 ± 0.01 µg/mL in the DPPH assay and 1.52 ± 0.01 µg/mL for ABTS. Purification of the MW < 0.65 kDa fraction was completed using RP-HPLC, whereupon the three fractions from the original six which had the highest antioxidant activity underwent further examination through ESI-Q-TOF-MS/MS. These particular peptides had between 7 and 11 amino acid residues. In the case of the MW < 0.65 kDa fraction, testing was also carried out to determine the viability of lung cancer cell lines, represented by ChaGo-K1 cells. Analysis of the antiproliferative properties allowed in vitro assessment of the ChaGo-K1 cells' viability following treatment using the MW < 0.65 kDa fraction. Flow-cytometry generated date which revealed that it was possible for the MW < 0.65 kDa fraction to induce apoptosis in the ChaGo-K1 cells in comparison to the results with cells which had not been treated.

3.
J Food Sci Technol ; 58(1): 85-97, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33505054

RESUMO

ABSTRACT: Angiotensin-I converting enzyme (ACE) inhibitors are widely used to control hypertension. In this study, protein hydrolysates from shiitake mushroom were hydrolyzed to prepare ACE-inhibitory peptides. Optimum process conditions for the hydrolysis of shiitake mushrooms using Alcalase were optimized using response surface methodology. Monitoring was conducted to check the degree of hydrolysis (DH) and ACE inhibitory activity. In the results, the optimum condition with the highest DH value of 28.88% was 50.2 °C, 3-h hydrolysis time, and 1.16 enzyme/substrate ratios. The highest ACE inhibitory activity (IC50 of 0.33 µg/mL) was under 47 °C, 3 h 28 min hydrolysis time, and 0.59 enzyme/substrate ratios. The highest activity was fractionated into 5 ranges of molecular weight, and the fraction below 0.65 kDa showed the highest activity with IC50 of 0.23 µg/mL. This fraction underwent purification using RP-HPLC, meanwhile the peak which offered a retention time of about 37 min showed high ACE inhibitory activity. Mass spectrometry identified the amino acid sequence of this peak as Lys-Ile-Gly-Ser-Arg-Ser-Arg-Phe-Asp-Val-Thr (KIGSRSRFDVT), with a molecular weight of 1265.43 Da. The synthesized variant of this peptide produced an ACE inhibitory activity (IC50) of 37.14 µM. The peptide KIGSRSRFDVT was shown to serve as a non-competitive inhibitor according to the Lineweaver-Burk plot findings. A molecular docking study was performed, which showed that the peptide binding occurred at an ACE non-active site. The findings suggest that peptides derived from shiitake mushrooms could serve either as useful components in pharmaceutical products, or in functional foods for the purpose of treating hypertension.

4.
Protein Expr Purif ; 153: 35-43, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30098414

RESUMO

The methylotrophic yeasts Pichia pastoris and Hansenula polymorpha have been used for the production of recombinant monomeric insulin precursor (MIP). Recombinant plasmids with one, two and four cassettes of the MIP gene have been successfully constructed in the pPICZαA expression vector to study the effects of gene copy number on MIP production. The MIP protein can be detected by dot-blot analysis from the culture broth of P. pastoris KM71H 24 h after placement in MMH induction medium. The secretion levels of MIP protein in culture broth at 72 h after induction indicated that P. pastoris KM71H with one cassette of the MIP gene had highest MIP protein levels (4.19 ±â€¯0.96 mg L-1). The transcription levels of the MIP gene increased proportionately with copy number. However, the amount of secreted MIP protein showed no correlation. The MIP molecular mass was 5756.951 Da, as confirmed by typical MALDI-TOF mass spectrometry. The MIP protein in culture broth was purified by two steps purification including SP Sepharose Fast Flow chromatography followed by ultrafiltration (10 kDa MW cutoff). The percentage of MIP recovery after the two-step purification was 70%, with a single band in a native-PAGE. The biological activity of tryptic hydrolyzed MIP was determined via the expression of the glucose transporter 4 gene (GLUT4) in H9c2 (2-1) cell line by RT-qPCR, and the results demonstrated that the MIP protein can induce glucose uptake and upregulation of GLUT4 mRNA transcription at 3 h and that this activity was related to Humalog® insulin.


Assuntos
Clonagem Molecular/métodos , Transportador de Glucose Tipo 4/agonistas , Glucose/metabolismo , Insulina/genética , Pichia/genética , Precursores de Proteínas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Dosagem de Genes , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/biossíntese , Insulina/farmacologia , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Pichia/metabolismo , Precursores de Proteínas/biossíntese , Precursores de Proteínas/farmacologia , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Alinhamento de Sequência
5.
Food Technol Biotechnol ; 57(3): 358-368, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31866749

RESUMO

This study aims to determine the antioxidant activity of bioactive peptides derived from Synechococcus sp. VDW cells cultured for 21 days. Synechococcus sp. VDW protein hydrolysates were prepared with trypsin and purified by ultrafiltration with molecular mass cut-off membranes of 10, 5 and 3 kDa. The M<3 kDa (FA) fraction had the highest 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities, with IC50 values of (11.5±0.3) and (13.6±0.2) µg/mL, respectively. The FA fraction was separated by reversed phase HPLC to yield four subfractions (F1-4). The F4 subfraction showed the highest maximum ABTS radical scavenging activity (3.55±0.61) % and it was selected for further analysis by electrospray ionisation quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS/MS) based on de novo peptide sequencing. Five antioxidant peptides were identified, of which AILESYSAGKTK had the highest ABTS radical scavenging activity. Furthermore, the FA fraction showed high cytotoxic activities against human cancer-derived cell lines, especially the colon cancer cell line (SW620) with an IC50 value of (106.6±21.5) µg/mL, but not the untransformed Wi38 cell line. The FA fraction activated the apoptotic pathway in SW620 cells after treatment for 24, 48 and 72 h, with the highest activities of caspases-3, -8 and -9 being observed after treatment for 72 h. These findings suggested that microalgae Synechococcus sp. VDW may be used to develop natural anticancer drugs.

6.
Food Technol Biotechnol ; 57(2): 200-212, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31537969

RESUMO

Nitric oxide (NO) plays a key role in the pathogenesis of inflammation and has been implicated in endotoxin-induced tissue injury. Chicken feather meal is a rich source of amino acids that may serve as a peptide hydrolysate to inhibit NO activity. Anti-inflammatory hydrolysates of chicken feather meal were prepared and fractionated into five samples based on molecular mass. The smallest fraction (<0.65 kDa) exhibited the highest NO inhibitory activity without cytotoxicity towards macrophage RAW 264.7 cells. Further subfractions were sufficient to obtain amino acid sequences by Q-TOF LC-MS/MS ESI analysis. Of these, the SNPSVAGVR (885.97 Da) peptide and its corresponding pure synthetic peptide have inhibitory activity against NO production by RAW 264.7 cells (IC50=(55.2±0.2) mM) without cytotoxicity. Reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR results revealed that the peptide of the obtained fraction reduced transcript expression levels of the pro-inflammatory cytokines iNOS, TNF-α, COX-2 and IL-6 in lipopolysaccharide-stimulated RAW 264.7 cells. These results suggest that the peptides derived from the chicken feather meal protein could potentially be used as a promising ingredient in functional foods or nutraceuticals against inflammatory diseases.

7.
J Sci Food Agric ; 99(11): 5112-5121, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30982967

RESUMO

BACKGROUND: Salmon bones, a waste by-product from the salmon industry, were used as a protein hydrolysate source for the production of bioactive peptides. The aim of this work was to evaluate the potential antioxidant and anti-inflammatory properties of salmon bone protein hydrolysate (SBPH). RESULTS: Salmon bones were hydrolyzed by separately using one of four proteases (Alcalase, Favourzyme, Neutrase and papain) at various concentrations (10, 25 and 50 mg mL-1 ), where the SBPH derived from 10 mg mL-1 papain hydrolysis exhibited the highest nitric oxide (NO) radical scavenging activity. After ultrafiltration, the MW < 0.65 kDa fraction showed the strongest NO inhibitory activity and was further fractionated by gel filtration chromatography (G1 and G2 fractions) and reverse-phase high-performance liquid chromatographic fractionation of the G1 fraction, from which the three main peaks (H1, H2 and H3) were found to have a marked NO-inhibitory activity and their peptide sequences were determined. Moreover, the G1 fraction was shown to inhibit both the lipopolysaccharide (LPS)-induced NO production and the LPS-induced inducible NO synthase , interleukin-6, tumor necrosis factor-α and induced NO production and the LPSCOX-2 mRNA levels in RAW 264.7 cells. CONCLUSIONS: Salmon bones from the salmon fisheries and farming industry were utilized by enzymatic hydrolysis for the production of valuable peptides. The results of this study suggested that bioactive peptides derived from salmon bones would be alternative anti-inflammation materials in functional resources. © 2019 Society of Chemical Industry.


Assuntos
Anti-Inflamatórios/farmacologia , Osso e Ossos/química , Proteínas de Peixes/química , Sequestradores de Radicais Livres/farmacologia , Hidrolisados de Proteína/farmacologia , Salmão , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Biocatálise , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Hidrólise , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Peptídeo Hidrolases/química , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Hidrolisados de Proteína/química , Células RAW 264.7
8.
Pak J Pharm Sci ; 29(6): 1893-1900, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28375103

RESUMO

Plant proteins have been investigated for their antioxidant activities, but there are still no reports detailing the antioxidant activity levels of plants in the Zingiberaceae family, which are popular food agents and used in folklore medicine. In this study, the crude rhizome protein extract and associated pepsin/pancreatin protein hydrolysate of 15 plants in the Zingiberaceae family were screened using the DPPH method for antioxidant activity. The protein hydrolysate of C. zedoaria possessed the highest antioxidant activity (IC50of 25.7±6.3µg/mL), which was close to that of the reference ascorbic acid (IC50of 22.3±1.8µg/mL). After enrichment by Q Sepharose ion exchange chromatography using a five step elution gradient of increasing NaCl concentration (0, 0.25, 0.5, 0.75 and 1M), the fraction eluting in the 0.5M NaCl (F50) showed the highest antioxidant activity (IC50 of 41.78±2.9µg/mL), and was found to have weak in vitro cytotoxicity against the HEP-G2 and SW620 cell lines (IC50 of 200.8±11.8 and 241.0±9.3µg/mL, respectively), but not the BT474, CHAGO and KATO-3 cell lines. F50 had an estimated molecular weight by MALDI-TOF mass spectrometry of 12,400-12,800 Da.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Extratos Vegetais/farmacologia , Proteínas de Plantas/farmacologia , Hidrolisados de Proteína/farmacologia , Rizoma/química , Zingiberaceae/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Ácido Ascórbico/farmacologia , Compostos de Bifenilo/química , Cromatografia por Troca Iônica , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Concentração Inibidora 50 , Peso Molecular , Neoplasias/patologia , Fitoterapia , Picratos/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Plantas Medicinais , Hidrolisados de Proteína/química , Hidrolisados de Proteína/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Foods ; 13(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998473

RESUMO

Rambutan seeds are by-products generated from fruit-processing factories; the leftover seeds are buried in landfills, generating methane emissions. This work aimed to extract polysaccharides (POLS) from rambutan seeds by using subcritical water extraction (SWE). The effects of defatting pretreatment and operating parameters in SWE were investigated using a Box-Behnken design. The results show that defatting pretreatment significantly enriched the POLS yield, while it had no significant effect on the total sugar content. Using the desirability approach, the suitable feedstock for SWE was defatted rambutan seeds. The maximum desirability of 0.86 was found at a temperature range of 145-150 °C, an extraction time of 15 min, and a liquid-solid ratio of 10:1. The POLS yield and total sugar content were in the range of 52.33-55.63 g/100 g feedstock and 83.37-87.45 g/100 g POLS, respectively. The extracted POLS had an equivalent molecular weight of 413.70 kDa that could be used as an extender in plant-based products. In conclusion, the defatting pretreatment of rambutan seeds not only improved the POLS yield obtained via SWE but also generated additional lipids that could be utilized as an unconventional source of specialty fat.

10.
PLoS One ; 19(5): e0301966, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776280

RESUMO

The purpose of this study is to assess the bioactive peptides derived from the defatted lemon basil seeds hydrolysate (DLSH) for their ability to inhibit pancreatic lipase, decrease intracellular lipid accumulation, and reduce adipogenesis. Response surface methodology (RSM) was employed to optimize trypsin hydrolysis conditions for maximizing lipase inhibitory activity (LI). A hydrolysis time of 387.06 min, a temperature of 49.03°C, and an enzyme concentration of 1.61% w/v, resulted in the highest LI with an IC50 of 368.07 µg/mL. The ultrafiltration of the protein hydrolysate revealed that the fraction below 0.65kDa exhibited the greatest LI potential. Further purification via RP-HPLC identified the Gly-Arg-Ser-Pro-Asp-Thr-His-Ser-Gly (GRSPDTHSG) peptide in the HPLC fraction F1 using mass spectrometry. The peptide was synthesized and demonstrated LI with an IC50 of 0.255 mM through a non-competitive mechanism, with a constant (Ki) of 0.61 mM. Docking studies revealed its binding site with the pancreatic lipase-colipase complex. Additionally, GRSPDTHSG inhibited lipid accumulation in 3T3-L1 cells in a dose-dependent manner without cytotoxic effects. Western blot analysis indicated downregulation of PPAR-γ and SREBP-1c levels under GRSPDTHSG treatment, while an increase in AMPK-α phosphorylation was observed, suggesting a role in regulating cellular lipid metabolism. Overall, GRSPDTHSG demonstrates potential in attenuating lipid absorption and adipogenesis, suggesting a prospective application in functional foods and nutraceuticals.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Lipase , Ocimum basilicum , PPAR gama , Peptídeos , Sementes , Proteína de Ligação a Elemento Regulador de Esterol 1 , Camundongos , Animais , Adipogenia/efeitos dos fármacos , Sementes/química , PPAR gama/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Hidrólise , Lipase/antagonistas & inibidores , Lipase/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/isolamento & purificação , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ocimum basilicum/química , Regulação para Baixo/efeitos dos fármacos , Simulação de Acoplamento Molecular
11.
PLoS One ; 19(6): e0304701, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870120

RESUMO

This paper presents the initial exploration of the free radical scavenging capabilities of peptides derived from protein hydrolysates (PPH) obtained from Zingiber cassumunar rhizomes (Phlai). To replicate the conditions of gastrointestinal digestion, a combination of pepsin and pancreatin proteolysis was employed to generate these hydrolysates. Subsequently, the hydrolysate underwent fractionation using molecular weight cut-off membranes at 10, 5, 3, and 0.65 kDa. The fraction with a molecular weight less than 0.65 kDa exhibited the highest levels ABTS, DPPH, FRAP, and NO radical scavenging activity. Following this, RP-HPLC was used to further separate the fraction with a molecular weight less than 0.65 kDa into three sub-fractions. Among these, the F5 sub-fraction displayed the most prominent radical-scavenging properties. De novo peptide sequencing via quadrupole-time-of-flight-electron spin induction-mass spectrometry identified a pair of novel peptides: Asp-Gly-Ile-Phe-Val-Leu-Asn-Tyr (DGIFVLNY or DY-8) and Ile-Pro-Thr-Asp-Glu-Lys (IPTDEK or IK-6). Database analysis confirmed various properties, including biological activity, toxicity, hydrophilicity, solubility, and potential allergy concerns. Furthermore, when tested on the human adenocarcinoma colon (Caco-2) cell line, two synthetic peptides demonstrated cellular antioxidant activity in a concentration-dependent manner. These peptides were also assessed using the FITC Annexin V apoptosis detection kit with PI, confirming the induction of apoptosis. Notably, the DY-8 peptide induced apoptosis, upregulated mRNA levels of caspase-3, -8, and -9, and downregulated Bcl-2, as confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). Western blot analysis indicated increased pro-apoptotic Bax expression and decreased anti-apoptotic Bcl-2 expression in Caco-2 cells exposed to the DY-8 peptide. Molecular docking analysis revealed that the DY-8 peptide exhibited binding affinity with Bcl-2, Bcl-xL, and Mcl-1, suggesting potential utility in combating colon cancer as functional food ingredients.


Assuntos
Apoptose , Neoplasias do Colo , Peptídeos , Rizoma , Transdução de Sinais , Humanos , Apoptose/efeitos dos fármacos , Rizoma/química , Células CACO-2 , Transdução de Sinais/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Zingiberaceae/química , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química
12.
Heliyon ; 10(2): e24444, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293411

RESUMO

The polysaccharides found in Caulerpa lentillifera (sea grape algae) are potentially an important bioactive resource. This study makes use of RSM (response surface methodology) to determine the optimal conditions for the extraction of valuable SGP (sea grape polysaccharides). The findings indicated that a water/raw material ratio of 10:1 mL/g, temperature of 90 °C, and extraction time of 45 min would maximize the yield, with experimentation achieving a yield of 21.576 %. After undergoing purification through DEAE-52 cellulose and Sephacryl S-100 column chromatography, three distinct fractions were obtained, namely SGP11, SGP21, and SGP31, each possessing average molecular weights of 38.24 kDa, 30.13 kDa, and 30.65 kDa, respectively. Following characterization, the fractions were shown to comprise glucose, galacturonic acid, xylose, and mannose, while the sulfate content was in the range of 12.2-21.8 %. Using Fourier transform infrared spectroscopy (FT-IR) it was possible to confirm with absolute certainty the sulfate polysaccharide attributes of SGP11, SGP21, and SGP31. NMR (nuclear magnetic resonance) findings made it clear that SGP11 exhibited α-glycosidic configurations, while the configurations of SGP21 and SGP31 were instead ß-glycosidic. The in vitro antioxidant assays which were conducted revealed that each of the fractions was able to demonstrate detectable scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cations. All fractions were also found to exhibit the capacity to scavenge NO radicals in a dose-dependent manner. SGP11, SGP21, and SGP31 were also able to display cellular antioxidant activity (CAA) against the human adenocarcinoma colon (Caco-2) cell line when oxidative damage was induced. The concentration levels were found to govern the extent of such activity. Moreover, purified SGP were found to exert strong inhibitory effects upon glycation, with the responses dependent upon dosage, thus confirming the potential for SGP to find a role as a natural resource for the production of polysaccharide-based antioxidant drugs, or products to promote improved health.

14.
Front Bioeng Biotechnol ; 10: 904046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159694

RESUMO

Over the last several decades, concerns about climate change and pollution due to human activity has gained widespread attention. Microalgae have been proposed as a suitable biological platform to reduce carbon dioxide, a major greenhouse gas, while also creating commercial sources of high-value compounds such as medicines, cosmetics, food, feed, and biofuel. Industrialization of microalgae culture and valorization is still limited by significant challenges in scaling up the production processes due to economic constraints and productivity capacities. Therefore, a boost in resource usage efficiency is required. This enhancement not only lowers manufacturing costs but also enhancing the long-term viability of microalgae-based products. Using wastewater as a nutrient source is a great way to reduce manufacturing costs. Furthermore, water scarcity is one of the most important global challenges. In recent decades, industrialization, globalization, and population growth have all impacted freshwater resources. Moreover, high amounts of organic and inorganic toxins in the water due to the disposal of waste into rivers can have severe impacts on human and animal health. Microalgae cultures are a sustainable solution to tertiary and quaternary treatments since they have the ability to digest complex contaminants. This review presents biorefineries based on microalgae from all angles, including the potential for environmental pollution remediation as well as applications for bioenergy and value-added biomolecule production. An overview of current information about microalgae-based technology and a discussion of the associated hazards and opportunities for the bioeconomy are highlighted.

15.
Heliyon ; 8(10): e11067, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36303910

RESUMO

The lingzhi mushroom (Ganoderma lucidum) is well known for its medicinal properties and has long played a role in traditional oriental medicine due to its health-giving benefits and potential to extend life expectancy. The mushroom contains a number of highly bioactive compounds and can also act as an excellent source of protein. This research investigated the peptides obtained from the protein hydrolysates of lingzhi mushrooms to assess their free radical scavenging abilities. These peptides were acquired via different proteases (Alcalase, Neutrase, papain, and pepsin-pancreatin) and were tested at a range of different concentrations (1.0%, 2.5%, and 5.0% w/v). The highest levels of 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging activities were presented by lingzhi mushroom hydrolysate using 2.5% (w/v) pepsin-pancreatin after 6 h of digestion. The hydrolysate was then fractionated using 10, 5, 3, and 0.65 kDa molecular weight cut-off membranes. The results showed that the MW 0.65 kDa fraction had the highest level of free radical scavenging activity. Further analysis of this MW 0.65 kDa fraction began with another RP-HPLC fractionation technique to obtain three further sub-fractions. De novo peptide sequencing using electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS/MS) was chosen as the optimum method for studying the F3 sub-fraction. DRVSIYGWG and ALLSISSF were discovered as new peptides with different antioxidant properties. Adenocarcinoma colon (Caco-2) cells showed the antioxidant action of these synthesized peptides. This activity was linked to peptide concentration. The peptides and their pure synthetic counterparts were found to reduce NO generation by RAW 264.7 macrophages without causing cytotoxicity. The results of gene expression reveal that the DRVSIYGWG and ALLSISSF peptides were able to cut the expression of the proinflammatory cytokine genes iNOS, IL-6, TNF-α, and COX-2 in the context of RAW 264.7 macrophages.

16.
Sci Rep ; 12(1): 4659, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304505

RESUMO

It is anticipated that calcium-chelating peptides may serve to enhance the absorption of calcium. This research examined defatted lemon basil seeds (DLBS) which had been treated with Alcalase under optimized parameters for the degree of hydrolysis for proteolysis, discovering that the activity for calcium-binding in a competitive condition with phosphate ion was 60.39 ± 1.545%. The purification of the hydrolysates was performed via ultrafiltration along with reversed-phase high performance liquid chromatography (RP-HPLC). Determination of the purified peptide amino acid sequence was confirmed for both peptides and reported as Ala-Phe-Asn-Arg-Ala-Lys-Ser-Lys-Ala-Leu-Asn-Glu-Asn (AFNRAKSKALNEN; Basil-1), and Tyr-Asp-Ser-Ser-Gly-Gly-Pro-Thr-Pro-Trp-Leu-Ser-Pro-Tyr (YDSSGGPTPWLSPY; Basil-2). The respective activities for calcium-binding were 38.62 ± 1.33%, and 42.19 ± 2.27%. Fluorescence spectroscopy, and fourier transform infrared spectroscopy were employed in order to assess the chelating mechanism between calcium and the peptides. It was found that the calcium ions took place through the activity of the amino nitrogen atoms and the oxygen atoms on the carboxyl group. Moreover, both of these peptides served to improve calcium transport and absorption in Caco-2 cell monolayers, depending on the concentration involved. It was revealed that the peptide-calcium complexes offered an increased calcium absorption percentage when compared to free calcium at similar concentrations. It might be concluded that the peptide within the peptide-calcium complex can promote calcium absorption through both active and passive transport pathways by increasing calcium concentration and promoting cell membrane interaction. Accordingly, DLBS protein can be considered a strong potential source of protein which can be used to produce calcium-binding peptides and might therefore play a role in the production of nutraceutical foods as a bioactive ingredient.


Assuntos
Cálcio , Ocimum basilicum , Células CACO-2 , Cálcio da Dieta , Humanos , Fragmentos de Peptídeos/análise , Peptídeos
17.
Proteome Sci ; 9: 43, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21801377

RESUMO

BACKGROUND: The similarly in plant physiology and the difficulty of plant classification, in some medicinal plant species, especially plants of the Zingiberaceae family, are a major problem for pharmacologists, leading to mistaken use. To overcome this problem, the proteomic base method was used to study protein profiles of the plant model, Curcuma comosa Roxb., which is a member of the Zingiberaceae and has been used in traditional Thai medicine as an anti-inflammatory agent for the treatment of postpartum uterine bleeding. RESULTS: Due to the complexity of protein extraction from this plant, microscale solution-phase isoelectric focusing (MicroSol-IEF) was used to enrich and improve the separation of Curcuma comosa rhizomes phenol-soluble proteins, prior to resolving and analyzing by two-dimensional polyacrylamide gel electrophoresis and identification by tandem mass spectrometry. The protein patterns showed a high abundance of protein spots in the acidic range, including three lectin proteins. The metabolic and defense enzymes, such as superoxide dismutase (SOD) and ascorbate peroxidase, that are associated with antioxidant activity, were mainly found in the basic region. Furthermore, cysteine protease was found in this plant, as had been previously reported in other Zingiberaceae plants. CONCLUSION: This report presents the protein profiles of the ginger plant, Curcuma comosa. Several interesting proteins were identified in this plant that may be used as a protein marker and aid in identifying plants of the Zingiberaceae family.

18.
Prep Biochem Biotechnol ; 41(2): 138-53, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21442550

RESUMO

The objective of this study was to investigate the activity of a protein identified as cysteine protease, purified from Zingiber ottensii Valeton rhizomes, in terms of antiproliferation against fungi, bacteria, and human malignant cell lines. By means of buffer extraction followed by (NH(4))(2)SO(4) precipitation and ion-exchange chromatography, the obtained dominant protein (designated F50) was submitted to non-denaturing and reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), where a single band and three bands were revealed from eletrophoretic patterns, respectively. It could be concluded at this point that the F50 was potentially a heterotrimer or heterodimer composed of either two small (∼13.8 and ∼15.2 kD) subunits or these two together with a larger (∼32.5 kD) one. In-gel digestion was carried out for the most intense band from reducing SDS-PAGE, and to the resulting material was applied liquid chromatography (LC)-mass spectroscopy (MS)/MS. The main F50 subunit was found to contain fragments with 100% similarity to zingipain-1, a cysteine protease first discovered in Zingiber officinale. The activity corresponding to the identified data, cysteine protease, was then confirmed in the F50 by azocasein assay and a positive result was obtained. The F50 then was further investigated for antiproliferation against three plant pathogenic fungi species by disk diffusion test, four bacterial species by direct exposure in liquid culture and dish diffusion tests, and five human malignant cell lines by tissue culture assay. It was found that a dose of 23.6 µg F50/0.3 cm(2) of paper disk exhibited the best inhibitory effect against Collectotrichum cassiicola, while lesser effects were found in Exserohilum turicicum and Fusarium oxysporum, respectively. No inhibitory effect against bacterial proliferation was detected in all studied bacterial strains. However, relatively strong antiproliferative effects were found against five human cell lines, with IC50 values ranging from 1.13 µg/mL (hepatoma cancer; HEP-G2) to 5.37 µg/mL (colon cancer; SW620). By periodic acid-Schiff's staining and phenol-sulfuric acid assay, the F50 was determined as a glycoprotein containing 26.30 ± 1.01% (by weight) of carbohydrate. Thus, a new glycoprotein with protease activity was successfully identified in Zingiber ottensii rhizome. The glycoprotein also contained antiproliferative activity against some plant pathogenic fungi and human cancer cell lines.


Assuntos
Antifúngicos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Cisteína Proteases/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Sequência de Aminoácidos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cromatografia por Troca Iônica , Cromatografia Líquida , Cisteína Proteases/metabolismo , Cisteína Proteases/farmacologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Eletroforese em Gel de Poliacrilamida , Feminino , Fungos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Dados de Sequência Molecular , Peso Molecular , Neoplasias/tratamento farmacológico , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Multimerização Proteica , Subunidades Proteicas/isolamento & purificação , Rizoma/química , Espectrometria de Massas em Tandem , Zingiberaceae/química
19.
RSC Adv ; 11(31): 18915-18929, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35478653

RESUMO

De-oiled rice bran (DORB) is a potentially useful by-product of the rice bran oil industry. DORB may prove to be an important protein source, and also contains many other micronutrients. This study has the principal aim of optimizing the process of DORB protein hydrolysate preparation, and then testing the hydrolysate to determine its lipase inhibitory activity. DORB underwent hydrolysis using Alcalase® and response surface methodology (RSM). The resulting degree of hydrolysis (DH) was then monitored along with the extent of any lipase inhibitory activity. The optimum levels of lipase inhibition were obtained at a temperature of 49.88 °C, a duration of 150.43 minutes, and 1.53% Alcalase® used for the sample 5% (w/v) solution. In these conditions, the DH value was 35.65%, and the IC50 value for lipase inhibitory activity was 2.84 µg mL-1. Five ranges of different molecular weights were obtained via fractionation, whereupon it was determined that the highest level of inhibitory activity was achieved by the <0.65 kDa fraction. This fraction was then further purified via RP-HPLC, and the resulting peak had a retention time of 21.75 minutes (F 2 sub-fraction) and exhibited high lipase inhibitory activity. Mass spectrometry was used to determine the amino acid sequence for this peak, identified as FYLGYCDY. This particular peptide is categorized as bitter, with a non-toxic profile, and having poor water solubility. The synthesized form of this peptide showed lipase inhibitory activity measured by an IC50 value of 0.47 ± 0.02 µM. The Lineweaver-Burk plot revealed that FYLGYCDY is a non-competitive inhibitor, while analysis of the docking results provided details of the FYLGYCDY peptide binding site with the porcine pancreatic lipase (PPL) complex, which is a competitive type. It can be inferred from these findings that DORB may prove a useful raw material source for the production of anti-obesity peptides which might enhance the therapeutic and commercial performance of functional foods and healthcare products.

20.
PLoS One ; 16(9): e0256595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473745

RESUMO

When fish are processed, fish bone becomes a key component of the waste, but to date very few researchers have sought to use fish bone to prepare protein hydrolysates as a means of adding value to the final product. This study, therefore, examines the potential of salmon bone, through an analysis of the benefits of its constituent components, namely fat, moisture, protein, and ash. In particular, the study seeks to optimize the process of enzymatic hydrolysis of salmon bone with trypsin in order to produce angiotensin-I converting enzyme (ACE) inhibitory peptides making use of response surface methodology in combination with central composite design (CCD). Optimum hydrolysis conditions concerning DH (degree of hydrolysis) and ACE-inhibitory activity were initially determined using the response surface model. Having thus determined which of the salmon bone protein hydrolysates (SBPH) offered the greatest level of ACE-inhibitory activity, these SBPH were duly selected to undergo ultrafiltration for further fractionation. It was found that the greatest ACE-inhibitory activity was achieved by the SBPH fraction which had a molecular weight lower than 0.65 kDa. This fraction underwent further purification using RP-HPLC, revealing that the F7 fraction offered the best ACE-inhibitory activity. For ACE inhibition, the ideal peptide in the context of the F7 fraction comprised eight amino acids: Phe-Cys-Leu-Tyr-Glu-Leu-Ala-Arg (FCLYELAR), while analysis of the Lineweaver-Burk plot revealed that the FCLYELAR peptide can serve as an uncompetitive ACE inhibitor. An examination of the molecular docking process showed that the FCLYELAR peptide was primarily able to provide ACE-inhibitory qualities as a consequence of the hydrogen bond interactions taking place between ACE and the peptide. Furthermore, upon isolation form the SBPH, the ACE-inhibitory peptide demonstrated ACE-inhibitory capabilities in vitro, underlining its potential for applications in the food and pharmaceutical sectors.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Osso e Ossos/química , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Salmão/metabolismo , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Animais , Sítios de Ligação , Análise Fatorial , Ligação de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Peso Molecular , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tripsina/química , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA