Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Pharmacol Exp Ther ; 346(2): 219-28, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23709115

RESUMO

Targeted therapies that suppress B cell receptor (BCR) signaling have emerged as promising agents in autoimmune disease and B cell malignancies. Bruton's tyrosine kinase (Btk) plays a crucial role in B cell development and activation through the BCR signaling pathway and represents a new target for diseases characterized by inappropriate B cell activity. N-(3-(5-fluoro-2-(4-(2-methoxyethoxy)phenylamino)pyrimidin-4-ylamino)phenyl)acrylamide (CC-292) is a highly selective, covalent Btk inhibitor and a sensitive and quantitative assay that measures CC-292-Btk engagement has been developed. This translational pharmacodynamic assay has accompanied CC-292 through each step of drug discovery and development. These studies demonstrate the quantity of Btk bound by CC-292 correlates with the efficacy of CC-292 in vitro and in the collagen-induced arthritis model of autoimmune disease. Recently, CC-292 has entered human clinical trials with a trial design that has provided rapid insight into safety, pharmacokinetics, and pharmacodynamics. This first-in-human healthy volunteer trial has demonstrated that a single oral dose of 2 mg/kg CC-292 consistently engaged all circulating Btk protein and provides the basis for rational dose selection in future clinical trials. This targeted covalent drug design approach has enabled the discovery and early clinical development of CC-292 and has provided support for Btk as a valuable drug target for B-cell mediated disorders.


Assuntos
Acrilamidas/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Acrilamidas/farmacocinética , Acrilamidas/uso terapêutico , Tirosina Quinase da Agamaglobulinemia , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Método Duplo-Cego , Humanos , Camundongos , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
2.
Nat Chem Biol ; 7(1): 22-4, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21113170

RESUMO

Designing selective inhibitors of proteases has proven problematic, in part because pharmacophores that confer potency exploit the conserved catalytic apparatus. We developed a fundamentally different approach by designing irreversible inhibitors that target noncatalytic cysteines that are structurally unique to a target in a protein family. We have successfully applied this approach to the important therapeutic target HCV protease, which has broad implications for the design of other selective protease inhibitors.


Assuntos
Inibidores de Cisteína Proteinase/uso terapêutico , Cisteína/antagonistas & inibidores , Desenho de Fármacos , Oligopeptídeos/uso terapêutico , Biocatálise , Bioquímica/métodos , Cristalografia por Raios X , Cisteína/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Hepacivirus/crescimento & desenvolvimento , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Virologia/métodos
3.
Clin Cancer Res ; 26(23): 6284-6298, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817076

RESUMO

PURPOSE: While immune checkpoint inhibitors such as anti-PD-L1 are rapidly becoming the standard of care in the treatment of many cancers, only a subset of treated patients have long-term responses. IL12 promotes antitumor immunity in mouse models; however, systemic recombinant IL12 had significant toxicity and limited efficacy in early clinical trials. EXPERIMENTAL DESIGN: We therefore designed a novel intratumoral IL12 mRNA therapy to promote local IL12 tumor production while mitigating systemic effects. RESULTS: A single intratumoral dose of mouse (m)IL12 mRNA induced IFNγ and CD8+ T-cell-dependent tumor regression in multiple syngeneic mouse models, and animals with a complete response demonstrated immunity to rechallenge. Antitumor activity of mIL12 mRNA did not require NK and NKT cells. mIL12 mRNA antitumor activity correlated with TH1 tumor microenvironment (TME) transformation. In a PD-L1 blockade monotherapy-resistant model, antitumor immunity induced by mIL12 mRNA was enhanced by anti-PD-L1. mIL12 mRNA also drove regression of uninjected distal lesions, and anti-PD-L1 potentiated this response. Importantly, intratumoral delivery of mRNA encoding membrane-tethered mIL12 also drove rejection of uninjected lesions with very limited circulating IL12p70, supporting the hypothesis that local IL12 could induce a systemic antitumor immune response against distal lesions. Furthermore, in ex vivo patient tumor slice cultures, human IL12 mRNA (MEDI1191) induced dose-dependent IL12 production, downstream IFNγ expression and TH1 gene expression. CONCLUSIONS: These data demonstrate the potential for intratumorally delivered IL12 mRNA to promote TH1 TME transformation and robust antitumor immunity.See related commentary by Cirella et al., p. 6080.


Assuntos
Neoplasias Colorretais/prevenção & controle , Interleucina-12/administração & dosagem , Linfócitos do Interstício Tumoral/imunologia , Melanoma/prevenção & controle , RNA Mensageiro/administração & dosagem , Células Th1/imunologia , Microambiente Tumoral/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Apoptose , Antígeno B7-H1/antagonistas & inibidores , Linfócitos T CD8-Positivos , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Interleucina-12/genética , Melanoma/genética , Melanoma/imunologia , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , RNA Mensageiro/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Transl Med ; 11(477)2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700577

RESUMO

Many solid cancers contain dysfunctional immune microenvironments. Immune system modulators that initiate responses to foreign pathogens could be promising candidates for reigniting productive responses toward tumors. Interleukin-1 (IL-1) and IL-12 cytokine family members cooperate at barrier tissues after microbial invasion, in human inflammatory diseases, and in antitumoral immunity. IL-36γ, in classic alarmin fashion, acts in damaged tissues, whereas IL-23 centrally coordinates immune responses to danger signals. In this study, direct intratumoral delivery of messenger RNAs (mRNAs) encoding these cytokines produced robust anticancer responses in a broad range of tumor microenvironments. The addition of mRNA encoding the T cell costimulator OX40L increased complete response rates in treated and untreated distal tumors compared to the cytokine mRNAs alone. Mice exhibiting complete responses were subsequently protected from tumor rechallenge. Treatments with these mRNA mixtures induced downstream cytokine and chemokine expression, and also activated multiple dendritic cell (DC) and T cell types. Consistent with this, efficacy was dependent on Batf3-dependent cross-presenting DCs and cytotoxic CD8+ T cells. IL-23/IL-36γ/OX40L triplet mRNA mixture triggered substantial immune cell recruitment into tumors, enabling effective tumor destruction irrespective of previous tumoral immune infiltrates. Last, combining triplet mRNA with checkpoint blockade led to efficacy in models otherwise resistant to systemic immune checkpoint inhibition. Human cell studies showed similar cytokine responses to the individual components of this mRNA mixture, suggesting translatability of immunomodulatory activity to human patients.


Assuntos
Imunidade , Interleucina-1/genética , Interleucina-23/genética , Neoplasias/imunologia , Ligante OX40/genética , RNA Mensageiro/administração & dosagem , Animais , Proliferação de Células , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Interleucina-1/metabolismo , Interleucina-23/metabolismo , Linfonodos/patologia , Ativação Linfocitária/imunologia , Camundongos , Ligante OX40/metabolismo , Distribuição Tecidual , Microambiente Tumoral/imunologia
5.
Clin Cancer Res ; 12(8): 2583-90, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16638869

RESUMO

PURPOSE: Fumagillin and related compounds have potent antiproliferative activity through inhibition of methionine aminopeptidase-2 (MetAP-2). It has recently been reported that MetAP-2 is highly expressed in germinal center B cells and germinal center-derived non-Hodgkin's lymphomas (NHL), suggesting an important role for MetAP-2 in proliferating B cells. Therefore, we determined the importance of MetAP-2 in normal and transformed germinal center B cells by evaluating the effects of MetAP-2 inhibition on the form and function of germinal centers and germinal center-derived NHL cells. EXPERIMENTAL DESIGN: To examine the activity of PPI-2458 on germinal center morphology, spleen sections from cynomolgus monkeys treated with oral PPI-2458 were analyzed. Antiproliferative activity of PPI-2458 was assessed on germinal center-derived NHL lines in culture. A MetAP-2 pharmacodynamic assay was used to determine cellular MetAP-2 inhibition following PPI-2458 treatment. Finally, inhibition of MetAP-2 and proliferation by PPI-2458 was examined in the human SR NHL line in culture and in implanted xenografts. RESULTS: Oral PPI-2458 caused a reduction in germinal center size and number in lymphoid tissues from treated animals. PPI-2458 potently inhibited growth (GI(50) = 0.2-1.9 nmol/L) of several NHL lines in a manner that correlated with MetAP-2 inhibition. Moreover, orally administered PPI-2458 significantly inhibited SR tumor growth, which correlated with inhibition of tumor MetAP-2 (>85% at 100 mg/kg) in mice. CONCLUSIONS: These results show the potent antiproliferative activity of PPI-2458 on NHL lines in vitro and oral antitumor activity in vivo and suggest the therapeutic potential of PPI-2458 as a novel agent for treatment of NHL should be evaluated in the clinical setting.


Assuntos
Aminopeptidases/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Compostos de Epóxi/farmacologia , Linfoma não Hodgkin/tratamento farmacológico , Metaloendopeptidases/antagonistas & inibidores , Valina/análogos & derivados , Aminopeptidases/metabolismo , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Western Blotting , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Compostos de Epóxi/uso terapêutico , Feminino , Centro Germinativo/efeitos dos fármacos , Centro Germinativo/patologia , Humanos , Contagem de Linfócitos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Linfoma não Hodgkin/metabolismo , Linfoma não Hodgkin/patologia , Macaca fascicularis , Metaloendopeptidases/metabolismo , Camundongos , Camundongos SCID , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores de Tempo , Valina/farmacologia , Valina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Int J Oncol ; 28(4): 955-63, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16525646

RESUMO

Over the past few decades, melanoma has shown the fastest growing incidence rate of all cancers. This malignancy is clinically defined by its potential to rapidly metastasize, and advanced metastatic melanomas are highly resistant to existing therapeutic regimens. Here, we report that PPI-2458, a novel, orally active agent of the fumagillin class of irreversible methionine aminopeptidase-2 (MetAP-2) inhibitors, potently inhibited the proliferation of B16F10 melanoma cells in vitro, with a growth inhibitory concentration 50% (GI50) of 0.2 nM. B16F10 growth inhibition was correlated with the inhibition of MetAP-2 enzyme, in a dose-dependent fashion, as determined by a pharmacodynamic assay, which measures the amount of uninhibited MetAP-2 following PPI-2458 treatment. Prolonged exposure of B16F10 cells to PPI-2458 at concentrations of up to 1 microM, 5,000-fold above the GI50, did not alter their sensitivity to PPI-2458 growth inhibition and no drug resistance was observed. Moreover, prolonged exposure to this agent induced melanogenesis, concomitant with the elevated expression of the melanocyte-specific enzymes tyrosinase and tyrosinase-related proteins (TRP) 1 and 2, a morphological feature associated with differentiated melanocytes. PPI-2458, when administered orally (p.o.), significantly inhibited B16F10 tumor growth in mice in a dose-dependent fashion, with a maximum inhibition of 62% at 100 mg/kg. This growth inhibition was directly correlated to the amount of irreversibly inhibited MetAP-2 (80% at 100 mg/kg PPI-2458) in tumor tissue. These data demonstrate that PPI-2458 has potent antiproliferative activity against B16F10 cells in vitro and in vivo, and that both activities are directly correlated with levels of MetAP-2 enzyme inhibition. This antiproliferative activity, coupled with additional observations from studies in vitro (absence of detectable resistance to PPI-2458 and induction of morphological features consistent with differentiated melanocytes), provides a rationale for assessing the therapeutic potential of PPI-2458 in the treatment of melanoma.


Assuntos
Proliferação de Células/efeitos dos fármacos , Compostos de Epóxi/farmacologia , Melanoma Experimental/prevenção & controle , Valina/análogos & derivados , Administração Oral , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/metabolismo , Animais , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta a Droga , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/uso terapêutico , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/metabolismo , Humanos , Masculino , Melaninas/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Metionil Aminopeptidases , Camundongos , Camundongos Endogâmicos C57BL , Valina/administração & dosagem , Valina/farmacologia , Valina/uso terapêutico
7.
Mol Cancer Ther ; 13(6): 1468-79, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24723450

RESUMO

Patients with non-small cell lung carcinoma (NSCLC) with activating mutations in epidermal growth factor receptor (EGFR) initially respond well to the EGFR inhibitors erlotinib and gefitinib. However, all patients relapse because of the emergence of drug-resistant mutations, with T790M mutations accounting for approximately 60% of all resistance. Second-generation irreversible EGFR inhibitors are effective against T790M mutations in vitro, but retain affinity for wild-type EGFR (EGFR(WT)). These inhibitors have not provided compelling clinical benefit in T790M-positive patients, apparently because of dose-limiting toxicities associated with inhibition of EGFR(WT). Thus, there is an urgent clinical need for therapeutics that overcome T790M drug resistance while sparing EGFR(WT). Here, we describe a lead optimization program that led to the discovery of four potent irreversible 2,4-diaminopyrimidine compounds that are EGFR mutant (EGFR(mut)) selective and have been designed to have low affinity for EGFR(WT). Pharmacokinetic and pharmacodynamic studies in H1975 tumor-bearing mice showed that exposure was dose proportional resulting in dose-dependent EGFR modulation. Importantly, evaluation of normal lung tissue from the same animals showed no inhibition of EGFR(WT). Of all the compounds tested, compound 3 displayed the best efficacy in EGFR(L858R/T790M)-driven tumors. Compound 3, now renamed CO-1686, is currently in a phase I/II clinical trial in patients with EGFR(mut)-advanced NSCLC that have received prior EGFR-directed therapy.


Assuntos
4-Aminopiridina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , 4-Aminopiridina/administração & dosagem , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Humanos , Técnicas In Vitro , Camundongos , Mutação , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Med Chem ; 56(3): 712-21, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23360348

RESUMO

PI3Kα has been identified as an oncogene in human tumors. By use of rational drug design, a targeted covalent inhibitor 3 (CNX-1351) was created that potently and specifically inhibits PI3Kα. We demonstrate, using mass spectrometry and X-ray crystallography, that the selective inhibitor covalently modifies PI3Kα on cysteine 862 (C862), an amino acid unique to the α isoform, and that PI3Kß, -γ, and -δ are not covalently modified. 3 is able to potently (EC(50) < 100 nM) and specifically inhibit signaling in PI3Kα-dependent cancer cell lines, and this leads to a potent antiproliferative effect (GI(50) < 100 nM). A covalent probe, 8 (CNX-1220), which selectively bonds to PI3Kα, was used to investigate the duration of occupancy of 3 with PI3Kα in vivo. This is the first report of a PI3Kα-selective inhibitor, and these data demonstrate the biological impact of selectively targeting PI3Kα.


Assuntos
Descoberta de Drogas , Isoenzimas/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Animais , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Ressonância Magnética Nuclear Biomolecular , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/química , Transdução de Sinais
9.
Cancer Discov ; 3(12): 1404-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24065731

RESUMO

UNLABELLED: Patients with non-small cell lung cancer (NSCLC) with activating EGF receptor (EGFR) mutations initially respond to first-generation reversible EGFR tyrosine kinase inhibitors. However, clinical efficacy is limited by acquired resistance, frequently driven by the EGFR(T790M) mutation. CO-1686 is a novel, irreversible, and orally delivered kinase inhibitor that specifically targets the mutant forms of EGFR, including T790M, while exhibiting minimal activity toward the wild-type (WT) receptor. Oral administration of CO-1686 as single agent induces tumor regression in EGFR-mutated NSCLC tumor xenograft and transgenic models. Minimal activity of CO-1686 against the WT EGFR receptor was observed. In NSCLC cells with acquired resistance to CO-1686 in vitro, there was no evidence of additional mutations or amplification of the EGFR gene, but resistant cells exhibited signs of epithelial-mesenchymal transition and demonstrated increased sensitivity to AKT inhibitors. These results suggest that CO-1686 may offer a novel therapeutic option for patients with mutant EGFR NSCLC. SIGNIFICANCE: We report the preclinical development of a novel covalent inhibitor, CO-1686, that irreversibly and selectively inhibits mutant EGFR, in particular the T790M drug-resistance mutation, in NSCLC models. CO-1686 is the fi rst drug of its class in clinical development for the treatment of T790M-positive NSCLC, potentially offering potent inhibition of mutant EGFR while avoiding the on-target toxicity observed with inhibition of the WT EGFR.


Assuntos
Acrilamidas/farmacologia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Acrilamidas/administração & dosagem , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Células HEK293 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Terapia de Alvo Molecular , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Arthritis Rheum ; 56(3): 850-60, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17328059

RESUMO

OBJECTIVE: To determine the disease-modifying activity and mechanism of action of the orally available methionine aminopeptidase type 2 inhibitor, [(1R)-1-carbamoyl-2-methyl-propyl]-carbamic acid-(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro [2.5] oct-6-yl ester (PPI-2458), in a rat model of peptidoglycan-polysaccharide (PG-PS)-induced arthritis. METHODS: Arthritis was induced in rats by administration of PG-PS, causing tarsal joint swelling and histopathologic changes characteristic of rheumatoid arthritis (RA). PPI-2458, a potent irreversible methionine aminopeptidase type 2 inhibitor, was administered orally every other day at 1, 5, or 10 mg/kg. RESULTS: In an in vitro osteoclastogenesis model, PPI-2458 potently inhibited osteoclast differentiation and bone resorption. In the rat PG-PS arthritis model, PPI-2458 afforded significant protection against established disease after therapeutic dosing. This in vivo activity of PPI-2458 was linked to the inhibition of methionine aminopeptidase type 2. Histopathologic assessment of affected joints showed improvement in processes of inflammation, bone resorption, and cartilage erosion, associated with significant improvement in all clinical indices. The protective effects of PPI-2458 against bone destruction in vivo, including the structural preservation of affected hind joints, correlated with improvements in bone histomorphometric markers, as determined by microfocal computed tomography and a significant decrease in systemic C-telopeptide of type I collagen, suggesting decreased osteoclast activity in vivo. Moreover, PPI-2458 prevented cartilage erosion as shown by a significant decrease in systemic cartilage oligomeric matrix protein. CONCLUSION: The findings of this study suggest that PPI-2458 exerts disease-modifying activity in experimental arthritis through its direct inhibition of several pathophysiologic processes of this disease. These results provide a rationale for assessing the potential of PPI-2458 as a novel RA therapy.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Inibidores Enzimáticos/uso terapêutico , Compostos de Epóxi/uso terapêutico , Valina/análogos & derivados , Aminopeptidases/antagonistas & inibidores , Animais , Artrite Reumatoide/induzido quimicamente , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Compostos de Epóxi/farmacologia , Feminino , Glicoproteínas/antagonistas & inibidores , Humanos , Articulações/patologia , Articulações/fisiopatologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Peptidoglicano , Polissacarídeos , Ratos , Ratos Endogâmicos Lew , Índice de Gravidade de Doença , Valina/farmacologia , Valina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA