Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(23): 16407-16437, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38807475

RESUMO

As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs). Hence, it is essential to investigate Au/Ag-S interfaces precisely and determine the exact bonding states in the active nanobiomaterials. This study intends to provide useful insights into the interactions between Au/Ag NPs and thiol groups that exist in the structure of biomaterials. In this regard, the modeling of Au/Ag-S bonding in active biological ingredients is precisely reviewed. Then, the physiological stability of Au/Ag-based plasmonic nanobioconjugates in real physiological environments (pharmacokinetics) is discussed. Recent experimental validation and achievements of plasmonic theranostics and radiolabelled nanomaterials based on Au/Ag-S conjugation are also profoundly reviewed. This study will also help researchers working on biosensors in which plasmonic devices deal with the thiol-containing biomaterials (e.g., antibodies) inside blood serum and living cells.


Assuntos
Ouro , Nanopartículas Metálicas , Prata , Enxofre , Ouro/química , Prata/química , Nanopartículas Metálicas/química , Enxofre/química , Humanos , Nanomedicina Teranóstica , Materiais Biocompatíveis/química , Animais , Compostos de Sulfidrila/química , Nanoestruturas/química
2.
Sci Rep ; 14(1): 3137, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326474

RESUMO

In this study, a new nanocomposite was created by combining copper-doped nickel ferrite (NiCuFe2O4) nanoparticles with MCM-48 (Mobil Composition of Matter No. 48) on a graphene oxide (GO) substrate functionalized with poly(ρ-phenylenediamine) abbreviated as (PρPD). This nanocomposite was developed to investigate its potential for enhancing the function of a supercapacitor in energy storage. Following NiCuFe2O4@MCM-48 preparation, Hummer's technique GO was applied. In-situ polymerization of NiCuFe2O4@MCM-48/GO nanoparticles with ρ-phenylenediamine (ρPD) in the presence of ammonium persulfate (APS) produced PρPD, a conductive polymer. Structural characterization of the nanocomposite includes FTIR, XRD, VSM, TGA-DTG, EDX, and FE-SEM. Results from BET indicate a pore size increase of up to 5 nm. Fast ion penetration and higher storage in capacitor material are explained by this. Additionally, the nanocomposite's electrochemical performance was evaluated using GCD and CV tests. The NiCuFe2O4@MCM-48/GO/PρPD nanocomposite has a specific capacitance of 203.57 F g-1 (1 A g-1). Furthermore, cyclical stability is essential for energy storage applications. The nanocomposite retains 92.5% of its original capacitance after 3000 cycles, indicating outstanding electrochemical stability.

3.
Sci Rep ; 14(1): 8166, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589455

RESUMO

This study involves the development of a new nanocomposite material for use in biological applications. The nanocomposite was based on tragacanth hydrogel (TG), which was formed through cross-linking of Ca2+ ions with TG polymer chains. The utilization of TG hydrogel and silk fibroin as natural compounds has enhanced the biocompatibility, biodegradability, adhesion, and cell growth properties of the nanobiocomposite. This advancement makes the nanobiocomposite suitable for various biological applications, including drug delivery, wound healing, and tissue engineering. Additionally, Fe3O4 magnetic nanoparticles were synthesized in situ within the nanocomposite to enhance its hyperthermia efficiency. The presence of hydrophilic groups in all components of the nanobiocomposite allowed for good dispersion in water, which is an important factor in increasing the effectiveness of hyperthermia cancer therapy. Hemolysis and 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays were conducted to evaluate the safety and efficacy of the nanobiocomposite for in-vivo applications. Results showed that even at high concentrations, the nanobiocomposite had minimal hemolytic effects. Finally, the hyperthermia application of the hybrid scaffold was evaluated, with a maximum SAR value of 41.2 W/g measured in the first interval.


Assuntos
Fibroínas , Hipertermia Induzida , Tragacanto , Alicerces Teciduais , Hidrogéis , Fenômenos Magnéticos
4.
Sci Rep ; 14(1): 10508, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714808

RESUMO

In this study, a novel nanobiocomposite consisting of agar (Ag), tragacanth gum (TG), silk fibroin (SF), and MOF-5 was synthesized and extensively investigated by various analytical techniques and basic biological assays for potential biomedical applications. The performed Trypan blue dye exclusion assay indicated that the proliferation percentage of HEK293T cells was 71.19%, while the proliferation of cancer cells (K-562 and MCF-7) was significantly lower, at 10.74% and 3.33%. Furthermore, the Ag-TG hydrogel/SF/MOF-5 nanobiocomposite exhibited significant antimicrobial activity against both E. coli and S. aureus strains, with growth inhibition rates of 76.08% and 69.19% respectively. Additionally, the hemolytic index of fabricated nanobiocomposite was found approximately 19%. These findings suggest that the nanobiocomposite exhibits significant potential for application in cancer therapy and wound healing.


Assuntos
Ágar , Fibroínas , Hidrogéis , Nanocompostos , Tragacanto , Fibroínas/química , Humanos , Hidrogéis/química , Ágar/química , Nanocompostos/química , Tragacanto/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Células HEK293 , Zinco/química , Proliferação de Células/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Testes de Sensibilidade Microbiana , Células MCF-7 , Linhagem Celular Tumoral
5.
Int J Biol Macromol ; 275(Pt 1): 133412, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968915

RESUMO

Combining a biocompatible hydrogel scaffold with the cell-supportive properties of silk fibroin (SF) and the unique functionalities of ZnFe2O4 nanoparticles creates a promising platform for advanced nanobiomaterials. The research is centered on synthesizing a natural hydrogel using cellulose (Cellul) and sodium alginate (SA) combined with SF and zinc ferrite nanoparticles. A range of analytical and biological assays were conducted to determine the biological and physicochemical properties of the nanobiocomposite. The hemolysis and 2,5-diphenyl-2H-tetrazolium bromide (MTT) assays indicated that the SA-Cellul hydrogel/SF/ZnFe2O4 nanobiocomposite was a biocompatible against human dermal fibroblasts (Hu02) and red blood cells (RBC). In addition, aside from demonstrating outstanding anti-biofilm activity, the nanobiocomposite also promotes the Hu02 cells adhesion, showcasing the synergistic effect of incorporating SF and ZnFe2O4 nanoparticle. These promising results show that this nanobiocomposite has potential applications in various biomedical fields.


Assuntos
Alginatos , Materiais Biocompatíveis , Biofilmes , Adesão Celular , Celulose , Compostos Férricos , Fibroínas , Hidrogéis , Zinco , Alginatos/química , Fibroínas/química , Fibroínas/farmacologia , Humanos , Hidrogéis/química , Adesão Celular/efeitos dos fármacos , Celulose/química , Celulose/farmacologia , Compostos Férricos/química , Compostos Férricos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Zinco/química , Nanopartículas/química , Fibroblastos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Linhagem Celular
6.
Artigo em Inglês | MEDLINE | ID: mdl-38147586

RESUMO

In the current project, magnetic Bio-MOF-13 was used as an efficient carrier for the targeted delivery and controlled release of doxorubicin (DOX) to MDA-MB-231 cells. Magnetic Bio-MOF-13 was prepared by two strategies and compared to determine the optimal state of the structure. In the first path, Bio-MOF-13 was grown in situ on the surface of Fe3O4 nanoparticles (core/shell structure), while in the second method, the two presynthesized materials were mixed together (surface composite). Core/shell structure, among prepared nanocomposites, was chosen for biological evaluation due to its favorable structural features like a high accessible surface area and pore volume. Also, it is highly advantageous for drug release due to its ability to selectively release DOX in the acidic pH of breast cancer cells, while preventing any premature release in the neutral pH of the blood. Drug release from the carrier structure is precisely controlled not only by pH but also by an external magnetic field, guaranteeing accurate drug delivery at the intended location. Confocal microscopy and flow cytometry assay clearly confirms the increase in drug concentration in the MDA-MB-231 cell line after external magnet applying. This point, along with the low toxicity of the carrier components, makes it a suitable candidate for injectable medicine. According to MTT results, the percentage of viable MDA-MB-231 cells after treatment with 10 µL of DOX@Fe3O4/Bio-MOF-13 core/shell composite in different concentrations, in the presence and absence of magnetic field is 0.87 ± 0.25 and 2.07 ± 0.15, respectively. As a result, the DOX@Fe3O4/Bio-MOF-13 core/shell composite was performed and approved for targeted drug delivery and magnetic field-assisted controlled release of DOX to the MDA-MB-231 cell line.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA