Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Am Chem Soc ; 144(1): 390-399, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962798

RESUMO

Optically driven ordering transitions are rarely observed in macromolecular systems, often because of kinetic limitations. Here, we report a series of block co-oligomers (BCOs) that rapidly order and disorder at room temperature in response to optical illumination, and the absence thereof. The system is a triblock where rigid azobenzene (Azo) mesogens are attached to each end of a flexible siloxane chain. UV-induced trans-to-cis Azo isomerization, and vice versa in the absence of UV light, drive disordering and ordering of lamellar superstructures and smectic mesophases, as manifested by liquefaction and solidification of the material, respectively. The impacts of chemical structure on BCO self-assembly and photoswitching kinetics are explored by in situ microscopy and X-ray measurements for different mesogen end groups (NO2 or CN), and different carbon chain lengths (0C or 12C) between the siloxane and the mesogen. The presence of the 12C spacer leads to hierarchical ordering with smectic layers of mesogens existing alongside larger length-scale lamellae, versus only smectic ordering without the spacer. These hierarchically ordered BCOs display highly persistent lamellar sheets that contrast with the tortuous, low-persistence "fingerprint"-type structures seen in conventional block copolymers. The reordering kinetics upon removal of UV illumination are extremely rapid (<5 s). This fast response is due to the electron-withdrawing NO2 and CN, which facilitate cis-to-trans isomerization via thermal relaxation at room temperature without additional stimuli. This work elucidates structure-property relationships in photoswitching BCOs and advances the possibility of developing systems in which ordered nanostructures can be easily optically written and erased.

2.
Soft Matter ; 18(42): 8165-8174, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36263742

RESUMO

Manipulating molecular and supramolecular interactions within cellulose nanocrystals (CNCs) to introduce different levels of assemblies combined with multiple functionalities is required for the development of degradable smart materials from renewable resources. To attain hierarchical structures and stimuli-responsive properties, a new class of liquid crystalline cellulosic hybrid materials is synthesized. Herein, main-chain rigid-rod-like oxidized cellulose (CNC-COOH) is prepared from a Cellulose Whatman filter paper (Cellulose W.P.) by acid hydrolysis and oxidized using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO). Thermotropic LC molecule, 4-cyano-4'-hydroxybiphenyl with a 12-methylene spacer (CB12-OH) is grafted onto the carboxylic acid group of CNC-COOH via Steglich esterification. The liquid crystalline functionalized CNCs cellulose nanocrystals (CNC-COO-CB12) are readily soluble in DMSO and ionic liquids. The extent of functionalization and structure of CNC-COO-CB12 are confirmed by solution-state 1H NMR and supported by other characterization techniques. We investigate the interplay of liquid crystalline orientational order of CNCs and cyanobiphenyl (CB12), and the supramolecular hydrogen bonding of CNCs within CNC-COO-CB12 and compare it with CNC-COOH. The introduction of thermotropic CB12 side chains onto rigid-rod CNCs shows the exclusive formation of smectic mesophases from the assemblies of CB12 with the absence of the cholesteric mesophase typically observed from CNC-COOH as verified by temperature-controlled SAXS (T-SAXS). This is further verified by UV-visible and SEM studies that show CNC-COO-CB12 forms smectic domains while CNC-COOH forms a visible light reflecting cholesteric mesophase in dried films. Thus, the interplay of liquid crystalline order of CNCs and CB12 and supramolecular hydrogen bonding of CNCs results in ordered, smectic-mesostructured CNCs for use in stimuli-responsive functional materials.

3.
AAPS PharmSciTech ; 22(3): 90, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33666763

RESUMO

Contrast-enhanced X-ray computed tomography plays an important role in cancer imaging and disease progression monitoring. Imaging using radiopaque nanoparticle platforms can provide insights on the likelihood of nanoparticle accumulation and can enable image-guided therapies. Perfluorooctyl bromide (PFOB)-loaded nanocapsules designed for this purpose were stabilized using an in-house synthesized PEGylated polycaprolactone-based copolymer (PEG-b-PCL(Ch)) and compared with commercial polycaprolactone employing a Quality-by-Design approach. PFOB is a dense liquid, weakly polarizable, and immiscible in organic and aqueous solvents; thus, carefully designed formulations for optimal colloidal stabilization to overcome settling-associated instability are required. PFOB-loaded nanocapsules exhibited high PFOB loading due to the intrinsic properties of PEG-b-PCL(Ch). Settling and caking are major sources of instability for PFOB formulations. However, the PEG-b-PCL(Ch) copolymer conferred the nanocapsules enough steric impediment and polymer shell elasticity to settle without significant caking, increasing the overall colloidal stability of the formulation. Furthermore, a clear relationship between nanocapsule physical properties and X-ray attenuation was established. Nanocapsules were able to enhance the X-ray contrast in vitro as a function of PFOB loading. This nanocapsule-based platform is promising for future translational studies and image-guided tumor therapy due to its enhanced contrastability and optimal colloidal stability.


Assuntos
Meios de Contraste/administração & dosagem , Meios de Contraste/química , Tomografia Computadorizada por Raios X/métodos , Colesterol/química , Coloides , Composição de Medicamentos , Estabilidade de Medicamentos , Excipientes , Fluorocarbonos , Hidrocarbonetos Bromados , Lactonas , Nanocápsulas , Tamanho da Partícula , Imagens de Fantasmas , Polietilenoglicóis
4.
Proc Natl Acad Sci U S A ; 114(45): E9437-E9444, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078379

RESUMO

The interaction of fields with condensed matter during phase transitions produces a rich variety of physical phenomena. Self-assembly of liquid crystalline block copolymers (LC BCPs) in the presence of a magnetic field, for example, can result in highly oriented microstructures due to the LC BCP's anisotropic magnetic susceptibility. We show that such oriented mesophases can be produced using low-intensity fields (<0.5 T) that are accessible using permanent magnets, in contrast to the high fields (>4 T) and superconducting magnets required to date. Low-intensity field alignment is enabled by the addition of labile mesogens that coassemble with the system's nematic and smectic A mesophases. The alignment saturation field strength and alignment kinetics have pronounced dependences on the free mesogen concentration. Highly aligned states with orientation distribution coefficients close to unity were obtained at fields as small as 0.2 T. This remarkable field response originates in an enhancement of alignment kinetics due to a reduction in viscosity, and increased magnetostatic energy due to increases in grain size, in the presence of labile mesogens. These developments provide routes for controlling structural order in BCPs, including the possibility of producing nontrivial textures and patterns of alignment by locally screening fields using magnetic nanoparticles.

5.
Pharmacol Res ; 107: 93-101, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26976795

RESUMO

We previously reported the development of an amphiphilic brush-like block copolymer composed of polynorbornene-cholesterol/polyethylene glycol (P(NBCh9-b-NBPEG)) that self-assembles in aqueous media to form long circulating nanostructures capable of encapsulating doxorubicin (DOX-NPs). Biodistribution studies showed that this formulation preferentially accumulates in tumor tissue with markedly reduced accumulation in the heart and other major organs. The aim of the current study was to evaluate the in vivo efficacy and toxicity of DOX containing self-assembled polymer nanoparticles in a mouse xenograft tumor model and compare its effects with the hydrochloride non-encapsulated form (free DOX). DOX-NPs significantly reduced the growth of tumors without inducing any apparent toxicity. Conversely, mice treated with free DOX exhibited significant weight loss, early toxic cardiomyopathy, acute toxic hepatopathy, reduced hematopoiesis and fatal toxicity. The improved safety profile of the polymeric DOX-NPs can be explained by the low circulating concentration of non-nanoparticle-associated drug as well as the reduced accumulation of DOX in non-target organs. These findings support the use of P(NBCh9-b-NBPEG) nanoparticles as delivery platforms for hydrophobic anticancer drugs intended to reduce the toxicity of conventional treatments.


Assuntos
Antineoplásicos , Colesterol/química , Doxorrubicina , Nanopartículas , Células A549 , Alanina Transaminase/sangue , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Doxorrubicina/efeitos adversos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos SCID , Miocárdio/patologia , Nanopartículas/efeitos adversos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Baço/efeitos dos fármacos , Baço/patologia , Troponina I/sangue , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nanomedicine ; 11(8): 2071-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26169153

RESUMO

A novel amphiphilic cholesterol-based block copolymer comprised of a polymethacrylate bearing cholesterol block and a polyethylene glycol block with reducible disulfide bonds (PC5MA-SS-PEO) was synthesized and evaluated as a redox-sensitive nanoparticulate delivery system. The self-assembled PC5MA-SS-PEO nanoparticles (SS-NPs) encapsulated the anticancer drug doxorubicin (DOX) with high drug loading (18.2% w/w) and high encapsulation efficiency (94.9%). DOX-encapsulated PC5MA-SS-PEO self-assembled nanoparticles (DOX-encapsulated SS-NPs) showed excellent stability and exhibited a rapid DOX release in response to dithiothreitol reductive condition. Importantly, following internalization by lung cancer cells, the reducible DOX-encapsulated SS-NPs achieved higher cytotoxicity than the non-reducible thioester NPs whereas blank nanoparticles were non-cytotoxic. Furthermore, in vivo imaging studies in tumor-bearing severe combined immunodeficiency (SCID) mice showed that the nanoparticles preferentially accumulated in tumor tissue with remarkably reduced accumulation in the healthy non-target organs. The results indicated that the SS-NPs may be a promising platform for cancer-cell specific delivery of hydrophobic anticancer drugs. FROM THE CLINICAL EDITOR: The use of nanocarriers for drug delivery against tumors has been under intense research. One problem of using carrier system is the drug release kinetics at tumor site. In this article, the authors continued their previous study in the development of an amphiphilic cholesterol-based block copolymer with redox-sensitive modification, so that the payload drug could be released in response to the microenvironment. The interesting results should provide a new direction for designing future novel nanocarrier systems.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Colesterol/análogos & derivados , Preparações de Ação Retardada/química , Dissulfetos/química , Doxorrubicina/administração & dosagem , Animais , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos , Masculino , Camundongos SCID , Nanopartículas , Neoplasias/tratamento farmacológico , Oxirredução , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química
7.
Sensors (Basel) ; 15(9): 23868-85, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26393601

RESUMO

In our efforts toward producing environmentally responsible but highly stable bioelectrodes with high electroactivities, we report here a simple, inexpensive, autoclavable high sensitivity biosensor based on enzyme-polymer nanogels. Met-hemoglobin (Hb) is stabilized by wrapping it in high molecular weight poly(acrylic acid) (PAA, M(W) 450k), and the resulting nanogels abbreviated as Hb-PAA-450k, withstood exposure to high temperatures for extended periods under steam sterilization conditions (122 °C, 10 min, 17-20 psi) without loss of Hb structure or its peroxidase-like activities. The bioelectrodes prepared by coating Hb-PAA-450k nanogels on glassy carbon showed well-defined quasi-reversible redox peaks at -0.279 and -0.334 V in cyclic voltammetry (CV) and retained >95% electroactivity after storing for 14 days at room temperature. Similarly, the bioelectrode showed ~90% retention in electrochemical properties after autoclaving under steam sterilization conditions. The ultra stable bioelectrode was used to detect hydrogen peroxide and demonstrated an excellent detection limit of 0.5 µM, the best among the Hb-based electrochemical biosensors. This is the first electrochemical demonstration of steam-sterilizable, storable, modular bioelectrode that undergoes reversible-thermal denaturation and retains electroactivity for protein based electrochemical applications.


Assuntos
Resinas Acrílicas/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Hemoglobinas/análise , Polietilenoglicóis/química , Polietilenoimina/química , Temperatura , Animais , Bovinos , Difusão Dinâmica da Luz , Eletrodos , Eletroforese em Gel de Ágar , Elementos Químicos , Hemoglobinas/química , Peróxido de Hidrogênio/análise , Cinética , Microscopia Eletrônica de Transmissão , Nanogéis , Peroxidase/metabolismo , Desnaturação Proteica , Vapor , Esterilização , Fatores de Tempo
8.
Bioconjug Chem ; 25(8): 1501-10, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25046001

RESUMO

Several key properties of catalase such as thermal stability, resistance to protease degradation, and resistance to ascorbate inhibition were improved, while retaining its structure and activity, by conjugation to poly(acrylic acid) (PAA, Mw 8000) via carbodiimide chemistry where the amine groups on the protein are appended to the carboxyl groups of the polymer. Catalase conjugation was examined at three different pH values (pH 5.0, 6.0, and 7.0) and at three distinct mole ratios (1:100, 1:500, and 1:1000) of catalase to PAA at each reaction pH. The corresponding products are labeled as Cat-PAA(x)-y, where x is the protein to polymer mole ratio and y is the pH used for the synthesis. The coupling reaction consumed about 60-70% of the primary amines on the catalase; all samples were completely water-soluble and formed nanogels, as evidenced by gel electrophoresis and electron microscopy. The UV circular dichroism (CD) spectra indicated substantial retention of protein secondary structure for all samples, which increased to 100% with increasing pH of the synthesis and polymer mole fraction. Soret CD bands of all samples indicated loss of ∼50% of band intensities, independent of the reaction pH. Catalytic activities of the conjugates increased with increasing synthesis pH, where 55-80% and 90-100% activity was retained for all samples synthesized at pH 5.0 and pH 7.0, respectively, and the Km or Vmax values of Cat-PAA(100)-7 did not differ significantly from those of the free enzyme. All conjugates synthesized at pH 7.0 were thermally stable even when heated to ∼85-90 °C, while native catalase denatured between 55 and 65 °C. All conjugates retained 40-90% of their original activities even after storing for 10 weeks at 8 °C, while unmodified catalase lost all of its activity within 2 weeks, under similar storage conditions. Interestingly, PAA surrounding catalase limited access to the enzyme from large molecules like proteases and significantly increased resistance to trypsin digestion compared to unmodified catalase. Similarly, negatively charged PAA surrounding the catalase in these conjugates protected the enzyme against inhibition by negatively charged inhibitors such as ascorbate. While Cat-PAA(100)-7 did not show any inhibition by ascorbate in the presence of 270 µM ascorbate, unmodified catalase lost ∼70% of its activity under similar conditions. This simple, facile, and rational methodology produced thermostable, storable catalase that is also protected from protease digestion and ascorbate inhibition and most likely prevented the dissociation of the multimer. Using synthetic polymers to protect and improve enzyme properties could be an attractive approach for making "Stable-on-the-Table" enzymes, as a viable alternative to protein engineering.


Assuntos
Resinas Acrílicas/química , Catalase/química , Animais , Catalase/antagonistas & inibidores , Catalase/metabolismo , Bovinos , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Temperatura
9.
Langmuir ; 30(18): 5176-84, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24785134

RESUMO

We previously reported that the stability and aqueous catalytic activity of met-hemoglobin (Hb) was improved when covalently conjugated with poly(acrylic acid) (PAA). In the current study, the Hb-PAA-water interface was modified to improve Hb catalytic efficiency in organic solvents (0-80% v/v organic solvent; remainder is the conjugate, the substrate, and water). The protein-polymer-solvent interface modification was achieved by esterifying the carboxylic acid groups of Hb-PAA with ethanol (EtOH) or 1-propanol (1-prop) after activation with carbodiimide. The resulting esters (Hb-PAA-Eth and Hb-PAA-1-prop, respectively) showed high peroxidase-like catalytic activities in acetonitrile (ACN), dimethylformamide (DMF), EtOH, and methanol (MeOH). Catalytic activities depended on the log(P) values of the solvents, which is a measure of solvent lipophilicity. The highest weighted-average activities were noted in MeOH for all three conjugates, and the lowest average activities were noted in DMF for two of the conjugates. Interestingly, the average activities of the conjugates were higher than that of Hb in all solvents except in ACN. The ratio of the catalytic rate constant (kcat) to the Michaelis constant (KM), the catalytic efficiency, for Hb-PAA-Eth in MeOH was the highest noted, and it is ~3-fold higher than that of Hb in buffer; conjugates offered higher efficiencies than Hb at most solvent compositions. This is the very first general, versatile, modular strategy of coupling the enhanced stability of Hb with improved activity in organic solvents via the chemical manipulation of the polymer shell around Hb and provides a robust approach to efficient biocatalysis in organic solvents.


Assuntos
Resinas Acrílicas/química , Biocatálise , Hemoglobinas/química , Polietilenoglicóis/química , Polietilenoimina/química , Nanogéis
10.
Biomacromolecules ; 15(11): 4363-75, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25310277

RESUMO

Amphiphilic brush-like block copolymers composed of polynorbonene-cholesterol/poly(ethylene glycol) (P(NBCh9-b-NBPEG)) self-assembled to form a long circulating nanostructure capable of encapsulating the anticancer drug doxorubicin (DOX) with high drug loading (22.1% w/w). The release of DOX from the DOX-loaded P(NBCh9-b-NBPEG) nanoparticles (DOX-NPs) was steady at less than 2% per day in PBS. DOX-NPs were effectively internalized by human cervical cancer cells (HeLa) and showed dose-dependent cytotoxicity, whereas blank nanoparticles were noncytotoxic. The DOX-NPs demonstrated a superior in vivo circulation time relative to that of free DOX. Tissue distribution and in vivo imaging studies showed that DOX-NPs preferentially accumulated in tumor tissue with markedly reduced accumulation in the heart and other vital organs. The DOX-NPs greatly improved survival and significantly inhibited tumor growth in tumor-bearing SCID mice compared to that for the untreated and free DOX-treated groups. The results indicated that self-assembled P(NBCh9-b-NBPEG) may be a useful carrier for improving tumor delivery of hydrophobic anticancer drugs.


Assuntos
Antineoplásicos/química , Colesterol/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Polímeros/química , Animais , Antineoplásicos/administração & dosagem , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Nanopartículas/administração & dosagem , Polímeros/administração & dosagem , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
J Am Chem Soc ; 134(3): 1630-41, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22239114

RESUMO

Here we report a modular strategy for preparing physically cross-linked and mechanically robust free-standing hydrogels comprising unique thermotropic liquid crystalline (LC) domains and magnetic nanoparticles both of which serve as the physical cross-linkers resulting in hydrogels that can be used as magnetically responsive soft actuators. A series of amphiphilic LC pentablock copolymers of poly(acrylic acid) (PAA), poly(5-cholesteryloxypentyl methacrylate) (PC5MA), and poly(ethylene oxide) (PEO) blocks in the sequence of PAA-PC5MA-PEO-PC5MA-PAA were prepared using reversible addition-fragmentation chain transfer polymerization. These pentablock copolymers served as macromolecular ligands to template Fe(3)O(4) magnetic nanoparticles (MNPs), which were directly anchored to the polymer chains through the coordination bonds with the carboxyl groups of PAA blocks. The resulting polymer/MNP nanocomposites comprised a complicated hierarchical structure in which polymer-coated MNP clusters were dispersed in a microsegregated pentablock copolymer matrix that further contained LC ordering. Upon swelling, the hierarchical structure was disrupted and converted to a network structure, in which MNP clusters were anchored to the polymer chains and LC domains stayed intact to connect solvated PEO and PAA blocks, leading to a free-standing LC magnetic hydrogel (LC ferrogel). By varying the PAA weight fraction (f(AA)) in the pentablock copolymers, the swelling degrees (Q) of the resulting LC ferrogels were tailored. Rheological experiments showed that these physically cross-linked free-standing LC ferrogels exhibit good mechanical strength with storage moduli G' of around 10(4)-10(5) Pa, similar to that of natural tissues. Furthermore, application of a magnetic field induced bending actuation of the LC ferrogels. Therefore, these physically cross-linked and mechanically robust LC ferrogels can be used as soft actuators and artificial muscles. Moreover, this design strategy is a versatile platform for incorporation of different types of nanoparticles (metallic, inorganic, biological, etc.) into multifunctional amphiphilic block copolymers, resulting in unique free-standing hybrid hydrogels of good mechanical strength and integrity with tailored properties and end applications.

12.
Nat Commun ; 13(1): 2507, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523816

RESUMO

Reconfigurable arrays of 2D nanomaterials are essential for the realization of switchable and intelligent material systems. Using liquid crystals (LCs) as a medium represents a promising approach, in principle, to enable such control. In practice, however, this approach is hampered by the difficulty of achieving stable dispersions of nanomaterials. Here, we report on good dispersions of pristine CdSe nanoplatelets (NPLs) in LCs, and reversible, rapid control of their alignment and associated anisotropic photoluminescence, using a magnetic field. We reveal that dispersion stability is greatly enhanced using polymeric, rather than small molecule, LCs and is considerably greater in the smectic phases of the resulting systems relative to the nematic phases. Aligned composites exhibit highly polarized emission that is readily manipulated by field-realignment. Such dynamic alignment of optically-active 2D nanomaterials may enable the development of programmable materials for photonic applications and the methodology can guide designs for anisotropic nanomaterial composites for a broad set of related nanomaterials.

13.
Langmuir ; 27(12): 7663-71, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21591719

RESUMO

The synthesis, characterization, and evaluation of a novel polymer-protein conjugate are reported here. The covalent conjugation of high-molecular weight poly(acrylic acid) (PAA) to the lysine amino groups of met-hemoglobin (Hb) resulted in the covalent conjugation of Hb to PAA (Hb-PAA conjugate), as confirmed by dialysis and electrophoresis studies. The retention of native-like structure of Hb in Hb-PAA was established from Soret absorption, circular dichroism studies, and the redox activity of the iron center in Hb-PAA. The peroxidase-like activities of the Hb-PAA conjugate further confirmed the retention of Hb structure and biological activity. Thermal denaturation of the conjugate was investigated by differential scanning calorimetry and steam sterilization studies. The Hb-PAA conjugate indicated an improved denaturation temperature (T(d)) when compared to that of the unmodified Hb. One astonishing observation was that polymer conjugation significantly enhanced the Hb-PAA storage stability at room temperature. After 120 h of storage at room temperature in phosphate-buffered saline (PBS) at pH 7.4, for example, Hb-PAA retained 90% of its initial activity and unmodified Hb retained <60% of its original activity under identical conditions of buffer, pH, and temperature. Our conjugate demonstrates the key role of polymers in enhancing Hb stability via a very simple, efficient, general route. Water-swollen, lightly cross-linked, stable Hb-polymer nanogels of 100-200 nm were produced quickly and economically by this approach for a wide variety of applications.


Assuntos
Resinas Acrílicas/química , Hemoglobinas/química , Varredura Diferencial de Calorimetria , Catálise , Dicroísmo Circular , Eletroforese em Gel de Ágar , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Peso Molecular , Oxirredução , Espectrofotometria Ultravioleta
14.
RSC Adv ; 11(24): 14615-14623, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35424004

RESUMO

We describe the influence of competing self-organizing phenomena on the formation of cholesteric mesophase in liquid crystalline brush block terpolymers (LCBBTs) and liquid crystalline random brush terpolymers (LCRBTs) containing chromonic molecules. A library of LCBBTs and LCRBTs are synthesized using ring-opening metathesis polymerization (ROMP) of norbornene side-chain functionalized monomers comprising cholesteryl mesogen (NBCh9), chromonic xanthenone (NBXan), and poly(ethylene glycol) (NBMPEG). Compression molded films of LCRBTs containing chromonic molecules display multilevel hierarchical structure in which cholesteric mesophase co-exists with π-π stacking of the chromonic mesophase along with PEG microphase segregated domains. This is unexpected as conventional LCBCPs and LCBBCs that lack chromonic molecules do not form cholesteric mesophases. The presence of π-π interactions modifies the interface at the IMDS so that both chromonic and cholesteric mesophases coexist leading to the manifestation of cholesteric phase for the first time within block architecture and is very reminiscent of previously published LCRBCs without chromonic molecules. The key to the observed hierarchical assembly in these LCBBTs containing chromonic molecules lies in the interplay of LC order, chromonic π-π stacking, PEG side chain microphase segregation, and their supramolecular cooperative motion. This unique "single component" polymer scaffold transforms our capacity to attain nanoscale hierarchies and optical properties from block architecture similar to nanoscale mesophases resulting in random architecture.

15.
ACS Omega ; 6(23): 15017-15028, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34151083

RESUMO

The synthesis of a number of tailored architectures of rhodamine dye-norbornene conjugate monomers and corresponding homopolymers derived from them is described. The impact of the monomer architecture on the mechanochromic, photochromic, and thermochromic properties of rhodamine-modified polynorbornenes is reported. Color changes were caused by the reversible interconversion between the "open" and "closed" spirolactam form of the covalently attached dye. Monomers were synthesized in two principle architectures that varied on: (1) the number of polymerizable norbornene groups tethered to a bifunctional rhodamine dye; (2) the presence of flexible methylene spacers between the dye and the polymerizable norbornene groups. Introduction of norbornene groups on each of the two hydroxy groups of a bifunctional rhodamine resulted in a cross-linked polymer that exhibited better mechanochromic, photochromic, and thermochromic properties compared to the corresponding polymer without cross-links, derived from the derivatization of bifunctional rhodamine with only one norbornene. The introduction of flexible methylene spacers between the two polymerizable norbornenes and the dye molecule resulted in a polymeric framework with rapidly reversible color-changing properties upon mechanical or photostimulation. The ideal monomer molecular structure, whereby (1) attaching norbornene on both sides of the rhodamine dye and (2) methylene spacers between the dye and norbornenes on both sides afforded the nonpareil polymer structure that was capable of thermoreversible mechanochromic and photochromic features, and irreversible thermochromic features. These new materials may find utility as multi-stimuli-responsive soft materials.

16.
Langmuir ; 26(10): 7418-24, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20387873

RESUMO

We present dynamic viscoelastic studies of styrene and N-tert-butylacrylamide block copolymers (S(278)NtBAM(517) and S(93)NtBAM(252)) in 1-octanol as a function of copolymer concentration at 15, 25, and 35 degrees C. Dilute solutions of these diblock copolymers in 1-octanol, a selective solvent for N-tert-butylacrylamide units, yield spherical micelles as evidenced by transmission electron microscopy (TEM). Dynamic light scattering (DLS) is used to determine hydrodynamic radius of the micelles as a function of temperature (15, 25, and 35 degrees C). Dilute solutions of these block copolymers behave as viscoelastic fluids in the low frequency range. At higher concentrations, these copolymer solutions form glass-clear gels. Rheological measurements show that these block copolymer solutions exhibit power-law behavior at the gel point (G'(omega) approximately G''(omega) approximately omega(n)). In this paper, we discuss the formation and properties of critical gel states of S(m)NtBAM(n) in 1-octanol based on (1) concentration dependence of micelle-gel transition, (2) determination of critical state by rheology, and (3) temperature dependence of critical gel concentration and material parameters.


Assuntos
Acrilamidas/química , Estirenos/química , Termodinâmica , 1-Octanol/química , Géis/química , Micelas , Tamanho da Partícula , Transição de Fase , Soluções , Propriedades de Superfície , Temperatura , Viscosidade
17.
Nat Cell Biol ; 22(6): 689-700, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32313104

RESUMO

Leukaemia stem cells (LSCs) underlie cancer therapy resistance but targeting these cells remains difficult. The Wnt-ß-catenin and PI3K-Akt pathways cooperate to promote tumorigenesis and resistance to therapy. In a mouse model in which both pathways are activated in stem and progenitor cells, LSCs expanded under chemotherapy-induced stress. Since Akt can activate ß-catenin, inhibiting this interaction might target therapy-resistant LSCs. High-throughput screening identified doxorubicin (DXR) as an inhibitor of the Akt-ß-catenin interaction at low doses. Here we repurposed DXR as a targeted inhibitor rather than a broadly cytotoxic chemotherapy. Targeted DXR reduced Akt-activated ß-catenin levels in chemoresistant LSCs and reduced LSC tumorigenic activity. Mechanistically, ß-catenin binds multiple immune-checkpoint gene loci, and targeted DXR treatment inhibited expression of multiple immune checkpoints specifically in LSCs, including PD-L1, TIM3 and CD24. Overall, LSCs exhibit distinct properties of immune resistance that are reduced by inhibiting Akt-activated ß-catenin. These findings suggest a strategy for overcoming cancer therapy resistance and immune escape.


Assuntos
Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , PTEN Fosfo-Hidrolase/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Feminino , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Int J Pharm ; 571: 118701, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31593806

RESUMO

Immature manufacturing and sub-optimal control of quality attributes hinder the effective translation of nanoformulations for cancer treatment, being partially responsible for the scarce number of products on the market. The effect of the method of preparation on the performance of complex formulations such as bio-responsive nanomedicines needs further understanding. In this study, we investigated the the influence of the method of preparation on the characteristics and bio-responsiveness of doxorubicin-loaded redox-sensitive nanoparticles (DOX-SS-NPs), formed by a biocompatible cholesterol-based amphiphilic block copolymer (PC5MA-SS-PEO). Two commonly used preparation techniques: (1) cosolvent removal and (2) an O/W emulsion method were compared and the in vitro and in vivo performance of promising formulations was assessed. Besides particle size distribution and drug loading, the response of the nanoparticles to reducing environments and subsequent release kinetics and cytotoxicity were also affected by the method of preparation. The investigation and understanding of this extensive influence, led to a DOX-SS-NPs formulation with significant in vivo efficacy and an improved safety profile when evaluated against free doxorubicin (DOX-HCl) and the commercial pegylated liposomal form (Doxil®). Our findings highlight the importance of formulation optimization and support the use of systematic approaches like Quality by Design to the development of bio-responsive nanomedicines for cancer treatment.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/análogos & derivados , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Células A549 , Animais , Antibióticos Antineoplásicos/farmacocinética , Colesterol/química , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Emulsões , Feminino , Humanos , Injeções Intravenosas , Masculino , Camundongos , Neoplasias/patologia , Oxirredução , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Polímeros/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Soft Matter ; 4(6): 1151-1157, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32907254

RESUMO

Stimuli-responsive polymer gels have received considerable attention due to their singular mechanical properties, which make them materials of choice for niche applications. Polymer gels comprising either physical or chemical cross-links can undergo controlled and reversible shape changes in response to an applied field. The stimulus or external field applied may include thermal, electrical, magnetic, pH, UV/visible light, ionic or metallic interactions or combinations thereof. The shape change can manifest itself in two-dimensional actuation, bending motion, or three-dimensional actuation, volume change. This reversible contraction and expansion of polymer gels as well as their mechanical properties are similar to that of biological muscles. This review will describe and critique some of the recent advances in the field of stimuli-responsive polymer gels including the design of new classes of polymeric gels, controlled actuation in response to external stimuli, and ability to tailor material properties for different applications.

20.
ACS Appl Mater Interfaces ; 10(34): 28440-28449, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30081624

RESUMO

Biomimetic mineralization of collagen fibrils is an essential process because the mineralized collagen fibers constitute the basic building block of natural bone. To overcome the limited availability and high cost of the noncollagenous proteins (NCPs) that regulate the mineralization process of collagen, commercially available analogues were developed to replicate sequestration and templating functions of NCPs. The use of branched polymers in intrafibrillar mineralization applications has never been explored. In this work, two novel carboxyl-rich brushlike polymers, a carboxylated polyethylene glycol terpolymer (PEG-COOH) and a polyethylene glycol/poly(acrylic acid) copolymer (PEG-PAA), were synthesized and modified to mimic the sequestration function of NCPs to induce intrafibrillar mineralization of collagen fibrils. It was found that these synthetic brushlike polymers are able to induce intrafibrillar mineralization by stabilizing the amorphous calcium phosphate (ACP) nanoprecursors and subsequently facilitating the infiltration of ACP into the gap zone of collagen microfibrils. Moreover, the weight ratios of mineral to collagen in the mineralized collagen fibrils in the presence of these brushlike polymers were 2.17 ± 0.07 for PEG-COOH and 2.23 ± 0.03 for PEG-PAA, while it is only 1.81 ± 0.21 for linear PAA. Plausible mineralization mechanisms using brushlike polymers are proposed that offer significant insight into the understanding of collagen mineralization induced by synthetic NCP analogues.


Assuntos
Colágeno/química , Biomimética , Matriz Extracelular , Minerais , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA