Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Biol ; 332(3): 601-15, 2003 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-12963370

RESUMO

Many point mutations in human Cu,Zn superoxide dismutase (SOD) cause familial amyotrophic lateral sclerosis (FALS), a fatal neurodegenerative disorder in heterozygotes. Here we show that these mutations cluster in protein regions influencing architectural integrity. Furthermore, crystal structures of SOD wild-type and FALS mutant H43R proteins uncover resulting local framework defects. Characterizations of beta-barrel (H43R) and dimer interface (A4V) FALS mutants reveal reduced stability and drastically increased aggregation propensity. Moreover, electron and atomic force microscopy indicate that these defects promote the formation of filamentous aggregates. The filaments resemble those seen in neurons of FALS patients and bind both Congo red and thioflavin T, suggesting the presence of amyloid-like, stacked beta-sheet interactions. These results support free-cysteine-independent aggregation of FALS mutant SOD as an integral part of FALS pathology. They furthermore provide a molecular basis for the single FALS disease phenotype resulting from mutations of diverse side-chains throughout the protein: many FALS mutations reduce structural integrity, lowering the energy barrier for fibrous aggregation.


Assuntos
Esclerose Lateral Amiotrófica/genética , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/patologia , Sítios de Ligação , Cobre/metabolismo , Cristalografia por Raios X , Cisteína/química , Dimerização , Estabilidade Enzimática , Humanos , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares , Microscopia de Força Atômica , Microscopia Eletrônica , Modelos Moleculares , Conformação Proteica , Superóxido Dismutase/química , Zinco/metabolismo
2.
J Am Chem Soc ; 129(11): 3118-26, 2007 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-17326633

RESUMO

The green fluorescent protein (GFP) creates its fluorophore by promoting spontaneous peptide backbone cyclization and amino acid oxidation chemistry on its own Ser65, Tyr66, Gly67 tripeptide sequence. Here we use high-resolution crystallography and mutational analyses to characterize GFP variants that undergo backbone cyclization followed by either anticipated chromophore synthesis via Y66F Calpha-Cbeta double-bond formation or unprecedented loss of a Y66F benzyl moiety via Calpha-Cbeta bond cleavage. We discovered a Y66F cleavage variant that subsequently incorporates an oxygen atom, likely from molecular oxygen, at the Y66 Calpha position. The post-translational products identified from these Y66F GFP structures support a common intermediate that partitions between Calpha-Cbeta oxidation and homolytic cleavage pathways. Our data indicate that Glu222 is the branchpoint control for this partitioning step and also influences subsequent oxygen incorporation reactions. From these results, we propose mechanisms for Y66F Calpha-Cbeta cleavage, oxygen incorporation, and chromophore biosynthesis with shared features that include radical chemistry. By revealing how GFP and RFP protein environments steer chemistry to favor fluorophore biosynthesis and disfavor alternative reactivity, we identify strategies for protein design. The proposed, common, one-electron oxidized, radical intermediate for post-translation modifications in the GFP family has general implications for how proteins drive and control spontaneous post-translational chemical modifications in the absence of metal ions.


Assuntos
Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/química , Processamento de Proteína Pós-Traducional , Cristalografia por Raios X , Análise Mutacional de DNA , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxigênio/química , Estrutura Secundária de Proteína
3.
J Am Chem Soc ; 128(14): 4685-93, 2006 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-16594705

RESUMO

The green fluorescent protein (GFP) creates a fluorophore out of three sequential amino acids by promoting spontaneous posttranslational modifications. Here, we use high-resolution crystallography to characterize GFP variants that not only undergo peptide backbone cyclization but additional denaturation-induced peptide backbone fragmentation, native peptide hydrolysis, and decarboxylation reactions. Our analyses indicate that architectural features that favor GFP peptide cyclization also drive peptide hydrolysis. These results are relevant for the maturation pathways of GFP homologues, such as the kindling fluorescent protein and the Kaede protein, which use backbone cleavage to red-shift the spectral properties of their chromophores. We further propose a photochemical mechanism for the decarboxylation reaction, supporting a role for the GFP protein environment in facilitating radical formation and one-electron chemistry, which may be important in activating oxygen for the oxidation step of chromophore biosynthesis. Together, our results characterize GFP posttranslational modification chemistry with implications for the energetic landscape of backbone cyclization and subsequent reactions, and for the rational design of predetermined spontaneous backbone cyclization and cleavage reactions.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Processamento de Proteína Pós-Traducional , Cristalografia por Raios X , Ciclização , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Ligação de Hidrogênio , Hidrólise , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína
4.
Biochemistry ; 44(6): 1960-70, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15697221

RESUMO

The Aequorea victoria green fluorescent protein (GFP) undergoes a remarkable post-translational modification to create a chromophore out of its component amino acids S65, Y66, and G67. Here, we describe mutational experiments in GFP designed to convert this chromophore into a 4-methylidene-imidazole-5-one (MIO) moiety similar to the post-translational active-site electrophile of histidine ammonia lyase (HAL). Crystallographic structures of GFP variant S65A Y66S (GFPhal) and of four additional related site-directed mutants reveal an aromatic MIO moiety and mechanistic details of GFP chromophore formation and MIO biosynthesis. Specifically, the GFP scaffold promotes backbone cyclization by (1) favoring nucleophilic attack by close proximity alignment of the G67 amide lone pair with the pi orbital of the residue 65 carbonyl and (2) removing enthalpic barriers by eliminating inhibitory main-chain hydrogen bonds in the precursor state. GFP R96 appears to induce structural rearrangements important in aligning the molecular orbitals for ring cyclization, favor G67 nitrogen deprotonation through electrostatic interactions with the Y66 carbonyl, and stabilize the reduced enolate intermediate. Our structures and analysis also highlight negative design features of the wild-type GFP architecture, which favor chromophore formation by destabilizing alternative conformations of the chromophore tripeptide. By providing a molecular basis for understanding and controlling the driving force and protein chemistry of chromophore creation, this research has implications for expansion of the genetic code through engineering of modified amino acids.


Assuntos
Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/química , Hidrozoários , Processamento de Proteína Pós-Traducional , Alanina/genética , Animais , Arginina/genética , Cristalografia por Raios X , Ciclização , Glicina/genética , Proteínas de Fluorescência Verde/genética , Histidina/genética , Histidina Amônia-Liase/química , Histidina Amônia-Liase/genética , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional/genética , Relação Estrutura-Atividade , Valina/genética
5.
Biochemistry ; 44(49): 16211-20, 2005 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-16331981

RESUMO

Aequoria victoria green fluorescent protein (GFP) is a revolutionary molecular biology tool because of its spontaneous peptide backbone cyclization and chromophore formation from residues Ser65, Tyr66, and Gly67. Here we use structure-based design, comprehensive targeted mutagenesis, and high-resolution crystallography to probe the significant functional role of conserved Arg96 (R96) in chromophore maturation. The R96M GFP variant, in which the R96M side chain is similar in volume but lacks the R96 positive charge, exhibits dramatically slower chromophore maturation kinetics (from hours to months). Comparison of the precyclized conformation of the chromophore-forming residues with the mature R96M chromophore reveals a similar Y66 conformer, contrary to the large Y66 conformational change previously defined in the slowly maturing R96A variant [Barondeau, D. P., Putnam, C. D., Kassmann, C. J., Tainer, J. A., and Getzoff, E. D. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 12111-12116]. Comprehensive R96 mutagenesis and fluorescent colony screening indicate that only the R96K substitution restores wild-type maturation kinetics. Further, we show that the slowly maturing R96A variant can be complemented with a Q183R second-site mutation designed to restore the missing R96 positive charge and rapid fluorophore biosynthesis. Moreover, comparative structural analysis of R96M, R96K, R96A/Q183R, and wild-type GFP reveals the importance of the presence of positive charge, rather than its exact position. Together, these structural, mutational, and biochemical results establish a pivotal role for the R96 positive charge in accelerating the GFP post-translational modification, with implications for peptide backbone cyclization in GFP, its homologues, and related biological systems.


Assuntos
Arginina/metabolismo , Proteínas de Fluorescência Verde , Cristalografia por Raios X , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Eletricidade Estática
6.
J Am Chem Soc ; 124(14): 3522-4, 2002 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-11929238

RESUMO

We designed a green fluorescent protein mutant (BFPms1) that preferentially binds Zn(II) (enhancing fluorescence intensity) and Cu(II) (quenching fluorescence) directly to a chromophore ligand that resembles a dipyrrole unit of a porphyrin. Crystallographic structure determination of apo, Zn(II)-bound, and Cu(II)-bound BFPms1 to better than 1.5 A resolution allowed us to refine metal centers without geometric restraints, to calculate experimental standard uncertainty errors for bond lengths and angles, and to model thermal displacement parameters anisotropically. The BFPms1 Zn(II) site (KD = 50 muM) displays distorted trigonal bipyrimidal geometry, with Zn(II) binding to Glu222, to a water molecule, and tridentate to the chromophore ligand. In contrast, the BFPms1 Cu(II) site (KD = 24 muM) exhibits square planar geometry similar to metalated porphyrins, with Cu(II) binding to the chromophore chelate and Glu222. The apo structure reveals a large electropositive region near the designed metal insertion channel, suggesting a basis for the measured metal cation binding kinetics. The preorganized tridentate ligand is accommodated in both coordination geometries by a 0.4 A difference between the Zn and Cu positions and by distinct rearrangements of Glu222. The highly accurate metal ligand bond lengths reveal different protonation states for the same oxygen bound to Zn vs Cu, with implications for the observed metal ion specificity. Crystallographic anisotropic thermal factor analysis validates metal ion rigidification of the chromophore in enhancement of fluorescence intensity upon Zn(II) binding. Thus, our high-resolution structures reveal how structure-based design has effectively linked selective metal binding to changes in fluorescent properties. Furthermore, this protein Zn(II) biosensor provides a prototype suitable for further optimization by directed evolution to generate metalloprotein variants with desirable physical or biochemical properties.


Assuntos
Proteínas Luminescentes/química , Metaloproteínas/química , Zinco/química , Técnicas Biossensoriais , Cobre/química , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Modelos Moleculares , Mutagênese , Conformação Proteica
7.
Biochemistry ; 43(25): 8038-47, 2004 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-15209499

RESUMO

The 1.30 A resolution crystal structure of nickel superoxide dismutase (NiSOD) identifies a novel SOD fold, assembly, and Ni active site. NiSOD is a hexameric assembly of right-handed 4-helix bundles of up-down-up-down topology with N-terminal hooks chelating the active site Ni ions. This newly identified nine-residue Ni-hook structural motif (His-Cys-X-X-Pro-Cys-Gly-X-Tyr) provides almost all interactions critical for metal binding and catalysis, and thus will likely be diagnostic of NiSODs. Conserved lysine residues are positioned for electrostatic guidance of the superoxide anion to the narrow active site channel. Apo structures show that the Ni-hook motif is unfolded prior to metal binding. The active site Ni geometry cycles from square planar Ni(II), with thiolate (Cys2 and Cys6) and backbone nitrogen (His1 and Cys2) ligands, to square pyramidal Ni(III) with an added axial His1 side chain ligand, consistent with electron paramagentic resonance spectroscopy. Analyses of the three NiSOD structures and comparisons to the Cu,Zn and Mn/Fe SODs support specific molecular mechanisms for NiSOD maturation and catalysis, and identify important structure-function relationships conserved among SODs.


Assuntos
Níquel/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , Azidas/farmacologia , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Cianetos/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Níquel/química , Oxirredução , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Eletricidade Estática , Streptomyces/enzimologia , Streptomyces/genética , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/genética
8.
Proc Natl Acad Sci U S A ; 100(21): 12111-6, 2003 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-14523232

RESUMO

Green fluorescent protein has revolutionized cell labeling and molecular tagging, yet the driving force and mechanism for its spontaneous fluorophore synthesis are not established. Here we discover mutations that substantially slow the rate but not the yield of this posttranslational modification, determine structures of the trapped precyclization intermediate and oxidized postcyclization states, and identify unanticipated features critical to chromophore maturation. The protein architecture contains a dramatic approximately 80 degrees bend in the central helix, which focuses distortions at G67 to promote ring formation from amino acids S65, Y66, and G67. Significantly, these distortions eliminate potential helical hydrogen bonds that would otherwise have to be broken at an energetic cost during peptide cyclization and force the G67 nitrogen and S65 carbonyl oxygen atoms within van der Waals contact in preparation for covalent bond formation. Further, we determine that under aerobic, but not anaerobic, conditions the Gly-Gly-Gly chromophore sequence cyclizes and incorporates an oxygen atom. These results lead directly to a conjugation-trapping mechanism, in which a thermodynamically unfavorable cyclization reaction is coupled to an electronic conjugation trapping step, to drive chromophore maturation. Moreover, we propose primarily electrostatic roles for the R96 and E222 side chains in chromophore formation and suggest that the T62 carbonyl oxygen is the base that initiates the dehydration reaction. Our molecular mechanism provides the basis for understanding and eventually controlling chromophore creation.


Assuntos
Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/química , Fenômenos Biofísicos , Biofísica , Cristalografia por Raios X , Metabolismo Energético , Variação Genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA