Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Circ Res ; 130(10): 1601-1617, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549375

RESUMO

The maintenance of cardiovascular homeostasis is highly dependent on tightly controlled interactions between the heart and the kidneys. Therefore, it is not surprising that a dysfunction in one organ affects the other. This interlinking relationship is aptly demonstrated in the cardiorenal syndrome. The characteristics of the cardiorenal syndrome state include alterations in neurohumoral drive, autonomic reflexes, and fluid balance. The evidence suggests that several factors contribute to these alterations. These may include peripheral and central nervous system abnormalities. However, accumulating evidence from animals with experimental models of congestive heart failure and renal dysfunction as well as humans with the cardiorenal syndrome suggests that alterations in neural pathways, from and to the kidneys and the heart, including the central nervous system are involved in regulating sympathetic outflow and may be critically important in the alterations in neurohumoral drive, autonomic reflexes, and fluid balance commonly observed in the cardiorenal syndrome. This review focuses on studies implicating neural pathways, particularly the afferent and efferent signals from the heart and the kidneys integrating at the level of the paraventricular nucleus in the hypothalamus to alter neurohumoral drive, autonomic pathways, and fluid balance. Further, it explores the potential mechanisms of action for the known beneficial use of various medications or potential novel therapeutic manipulations for the treatment of the cardiorenal syndrome. A comprehensive understanding of these mechanisms will enhance our ability to treat cardiorenal conditions and their cardiovascular complications more efficaciously and thoroughly.


Assuntos
Síndrome Cardiorrenal , Insuficiência Cardíaca , Animais , Feminino , Coração/fisiologia , Humanos , Rim , Masculino , Núcleo Hipotalâmico Paraventricular , Sistema Nervoso Simpático
2.
Curr Hypertens Rep ; 24(7): 235-246, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35384579

RESUMO

PURPOSE OF REVIEW: This review focuses on studies implicating forebrain neural pathways and neuromodulator systems, particularly, the nitric oxide system within the paraventricular nucleus of the hypothalamus in regulating neurohumoral drive, autonomic pathways, and fluid balance. RECENT FINDINGS: Accumulating evidence from animals with experimental models of hypertension and heart failure as well as humans with hypertension suggests that alterations in central neural pathways, particularly, within the PVN neuromodulated by neuronal nitric oxide, are involved in regulating sympathetic outflow particularly to the kidney resulting in alterations in fluid balance commonly observed in hypertension and heart failure states. The characteristics of the hypertensive and heart failure states include alterations in neuronal nitric oxide within the PVN to cause an increase in renal sympathetic nerve activity to result in sodium and fluid retention in these diseases. A comprehensive understanding of these mechanisms will enhance our ability to treat hypertensive and heart failure conditions and their cardiovascular complications more efficiently.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Hipertensão , Animais , Humanos , Óxido Nítrico/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Reflexo/fisiologia , Sistema Nervoso Simpático
3.
J Mol Cell Cardiol ; 149: 27-40, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32956670

RESUMO

Identification of proteins that interact with Cx43 has been instrumental in the understanding of gap junction (GJ) regulation. An in vitro phosphorylation screen identified that Protein tyrosine kinase 2 beta (Pyk2) phosphorylated purified Cx43CT and this led us to characterize the impact of this phosphorylation on Cx43 function. Mass spectrometry identified Pyk2 phosphorylates Cx43 residues Y247, Y265, Y267, and Y313. Western blot and immunofluorescence staining using HeLaCx43 cells, HEK 293 T cells, and neonatal rat ventricular myocytes (NRVMs) revealed Pyk2 can be activated by Src and active Pyk2 interacts with Cx43 at the plasma membrane. Overexpression of Pyk2 increases Cx43 phosphorylation and knock-down of Pyk2 decreases Cx43 phosphorylation, without affecting the level of active Src. In HeLaCx43 cells treated with PMA to activate Pyk2, a decrease in Cx43 GJ intercellular communication (GJIC) was observed when assayed by dye transfer. Moreover, PMA activation of Pyk2 could be inhibited by the small molecule PF4618433. This partially restored GJIC, and when paired with a Src inhibitor, returned GJIC to the no PMA control-level. The ability of Pyk2 and Src inhibitors to restore Cx43 function in the presence of PMA was also observed in NRVMs. Additionally, an animal model of myocardial infarction induced heart failure showed a higher level of active Pyk2 activity and increased interaction with Cx43 in ventricular myocytes. Src inhibitors have been used to reverse Cx43 remodeling and improve heart function after myocardial infarction; however, they alone could not fully restore proper Cx43 function. Our data suggest that Pyk2 may need to be inhibited, in addition to Src, to further (if not completely) reverse Cx43 remodeling and improve intercellular communication.


Assuntos
Comunicação Celular , Conexina 43/metabolismo , Quinase 2 de Adesão Focal/antagonistas & inibidores , Junções Comunicantes/metabolismo , Quinases da Família src/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Linhagem Celular , Conexina 43/química , Modelos Animais de Doenças , Quinase 2 de Adesão Focal/metabolismo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/patologia , Ventrículos do Coração/patologia , Humanos , Mutação/genética , Fosforilação , Ligação Proteica , Domínios Proteicos , Ratos , Acetato de Tetradecanoilforbol/farmacologia , Quinases da Família src/genética , Quinases da Família src/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 319(6): H1414-H1437, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33064567

RESUMO

Increased matrix metalloprotease 9 (MMP9) after myocardial infarction (MI) exacerbates ischemia-induced chronic heart failure (CHF). Autophagy is cardioprotective during CHF; however, whether increased MMP9 suppresses autophagic activity in CHF is unknown. This study aimed to determine whether increased MMP9 suppressed autophagic flux and MMP9 inhibition increased autophagic flux in the heart of rats with post-MI CHF. Sprague-Dawley rats underwent either sham surgery or coronary artery ligation 6-8 wk before being treated with MMP9 inhibitor for 7 days, followed by cardiac autophagic flux measurement with lysosomal inhibitor bafilomycin A1. Furthermore, autophagic flux was measured in vitro by treating H9c2 cardiomyocytes with two independent pharmacological MMP9 inhibitors, salvianolic acid B (SalB) and MMP9 inhibitor-I, and CRISPR/cas9-mediated MMP9 genetic ablation. CHF rats showed cardiac infarct, significantly increased left ventricular end-diastolic pressure (LVEDP), and increased MMP9 activity and fibrosis in the peri-infarct areas of left ventricular myocardium. Measurement of the autophagic markers LC3B-II and p62 with lysosomal inhibition showed decreased autophagic flux in the peri-infarct myocardium. Treatment with SalB for 7 days in CHF rats decreased MMP9 activity and cardiac fibrosis but increased autophagic flux in the peri-infarct myocardium. As an in vitro corollary study, measurement of autophagic flux in H9c2 cardiomyocytes and fibroblasts showed that pharmacological inhibition or genetic ablation of MMP9 upregulates autophagic flux. These data are consistent with our observations that MMP9 inhibition upregulates autophagic flux in the heart of rats with CHF. In conclusion, the results in this study suggest that the beneficial outcome of MMP9 inhibition in pathological cardiac remodeling is in part mediated by improved autophagic flux.NEW & NOTEWORTHY This study elucidates that the improved cardiac extracellular matrix (ECM) remodeling and cardioprotective effect of matrix metalloprotease 9 (MMP9) inhibition in chronic heart failure (CHF) are via increased autophagic flux. Autophagy is cardioprotective; however, the mechanism of autophagy suppression in CHF is unknown. We for the first time demonstrated here that increased MMP9 suppressed cardiac autophagy and ablation of MMP9 increased cardiac autophagic flux in CHF rats. Restoring the physiological level of autophagy in the failing heart is a challenge, and our study addressed this challenge. The novelty and highlights of this report are as follows: 1) MMP9 regulates cardiomyocyte and fibroblast autophagy, 2) MMP9 inhibition protects CHF after myocardial infarction (MI) via increased cardiac autophagic flux, 3) MMP9 inhibition increased cardiac autophagy via activation of AMP-activated protein kinase (AMPK)α, Beclin-1, Atg7 pathway and suppressed mechanistic target of rapamycin (mTOR) pathway.


Assuntos
Autofagia/efeitos dos fármacos , Benzofuranos/farmacologia , Fibroblastos/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Linhagem Celular , Modelos Animais de Doenças , Fibroblastos/enzimologia , Fibroblastos/patologia , Fibrose , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Transdução de Sinais , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
5.
Cardiovasc Diabetol ; 19(1): 57, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32384887

RESUMO

BACKGROUND: Glucagon-like peptide-1 (GLP-1) induces diuresis and natriuresis. Previously we have shown that GLP-1 activates afferent renal nerve to increase efferent renal sympathetic nerve activity that negates the diuresis and natriuresis as a negative feedback mechanism in normal rats. However, renal effects of GLP-1 in heart failure (HF) has not been elucidated. The present study was designed to assess GLP-1-induced diuresis and natriuresis in rats with HF and its interactions with renal nerve activity. METHODS: HF was induced in rats by coronary artery ligation. The direct recording of afferent renal nerve activity (ARNA) with intrapelvic injection of GLP-1 and total renal sympathetic nerve activity (RSNA) with intravenous infusion of GLP-1 were performed. GLP-1 receptor expression in renal pelvis, densely innervated by afferent renal nerve, was assessed by real-time PCR and western blot analysis. In separate group of rats after coronary artery ligation selective afferent renal denervation (A-RDN) was performed by periaxonal application of capsaicin, then intravenous infusion of GLP-1-induced diuresis and natriuresis were evaluated. RESULTS: In HF, compared to sham-operated control; (1) response of increase in ARNA to intrapelvic injection of GLP-1 was enhanced (3.7 ± 0.4 vs. 2.0 ± 0.4 µV s), (2) GLP-1 receptor expression was increased in renal pelvis, (3) response of increase in RSNA to intravenous infusion of GLP-1 was enhanced (132 ± 30% vs. 70 ± 16% of the baseline level), and (4) diuretic and natriuretic responses to intravenous infusion of GLP-1 were blunted (urine flow 53.4 ± 4.3 vs. 78.6 ± 4.4 µl/min/gkw, sodium excretion 7.4 ± 0.8 vs. 10.9 ± 1.0 µEq/min/gkw). A-RDN induced significant increases in diuretic and natriuretic responses to GLP-1 in HF (urine flow 96.0 ± 1.9 vs. 53.4 ± 4.3 µl/min/gkw, sodium excretion 13.6 ± 1.4 vs. 7.4 ± 0.8 µEq/min/gkw). CONCLUSIONS: The excessive activation of neural circuitry involving afferent and efferent renal nerves suppresses diuretic and natriuretic responses to GLP-1 in HF. These pathophysiological responses to GLP-1 might be involved in the interaction between incretin-based medicines and established HF condition. RDN restores diuretic and natriuretic effects of GLP-1 and thus has potential beneficial therapeutic implication for diabetic HF patients.


Assuntos
Capsaicina/administração & dosagem , Diurese/efeitos dos fármacos , Diuréticos/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Insuficiência Cardíaca/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/inervação , Natriurese/efeitos dos fármacos , Simpatectomia Química , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/fisiopatologia , Infusões Intravenosas , Masculino , Ratos Sprague-Dawley
6.
Nitric Oxide ; 94: 54-62, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654775

RESUMO

Activation of renin-angiotensin- system, nitric oxide (NO•) bioavailability and subsequent sympathoexcitation plays a pivotal role in the pathogenesis of many cardiovascular diseases, including hypertension. Previously we have shown increased protein expression of PIN (a protein inhibitor of nNOS: neuronal nitric oxide synthase, known to dissociate nNOS dimers into monomers) with concomitantly reduced levels of catalytically active dimers of nNOS in the PVN of rats with heart failure. To elucidate the molecular mechanism by which Angiotensin II (Ang II) increases PIN expression, we used Sprague-Dawley rats (250-300 g) subjected to intracerebroventricular infusion of Ang II (20 ng/min, 0.5 µl/h) or saline as vehicle (Veh) for 14 days through osmotic mini-pumps and NG108-15 hybrid neuronal cell line treated with Ang II as an in vitro model. Ang II infusion significantly increased baseline renal sympathetic nerve activity and mean arterial pressure. Ang II infusion increased the expression of PIN (1.24 ± 0.04* Ang II vs. 0.65 ± 0.07 Veh) with a concomitant 50% decrease in dimeric nNOS and PIN-Ub conjugates (0.73 ± 0.04* Ang II vs. 1.00 ± 0.03 Veh) in the PVN. Substrate-dependent ligase assay in cells transfected with pCMV-(HA-Ub)8 vector revealed a reduction of HA-Ub-PIN conjugates after Ang II and a proteasome inhibitor, Lactacystin (LC), treatment (4.5 ± 0.7* LC Ang II vs. 9.2 ± 2.5 LC). TUBE (Tandem Ubiquitin-Binding Entities) assay showed decrease PIN-Ub conjugates in Ang II-treated cells (0.82 ± 0.12* LC Ang II vs. 1.21 ± 0.06 LC) while AT1R blocker, Losartan (Los) treatment diminished the Ang II-mediated stabilization of PIN (1.21 ± 0.07 LC Los vs. 1.16 ± 0.04* LC Ang II Los). Taken together, our studies suggest that increased central levels of Ang II contribute to the enhanced expression of PIN leading to reduced expression of the dimeric form of nNOS, thus diminishing the inhibitory action of NO• on pre-autonomic neurons in the PVN resulting in increased sympathetic outflow.


Assuntos
Angiotensina II/administração & dosagem , Hipertensão/induzido quimicamente , Angiotensina II/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipertensão/metabolismo , Infusões Intraventriculares , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas
7.
Am J Physiol Renal Physiol ; 317(4): F1010-F1021, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31390233

RESUMO

Glucagon-like peptide-1 (GLP-1), an incretin hormone, has diuretic and natriuretic effects. The present study was designed to explore the possible underlying mechanisms for the diuretic and natriuretic effects of GLP-1 via renal nerves in rats. Immunohistochemistry revealed that GLP-1 receptors were avidly expressed in the pelvic wall, the wall being adjacent to afferent renal nerves immunoreactive to calcitonin gene-related peptide, which is the dominant neurotransmitter for renal afferents. GLP-1 (3 µM) infused into the left renal pelvis increased ipsilateral afferent renal nerve activity (110.0 ± 15.6% of basal value). Intravenous infusion of GLP-1 (1 µg·kg-1·min-1) for 30 min increased renal sympathetic nerve activity (RSNA). After the distal end of the renal nerve was cut to eliminate the afferent signal, the increase in efferent renal nerve activity during intravenous infusion of GLP-1 was diminished compared with the increase in total RSNA (17.0 ± 9.0% vs. 68.1 ± 20.0% of the basal value). Diuretic and natriuretic responses to intravenous infusion of GLP-1 were enhanced by total renal denervation (T-RDN) with acute surgical cutting of the renal nerves. Selective afferent renal nerve denervation (A-RDN) was performed by bilateral perivascular application of capsaicin on the renal nerves. Similar to T-RDN, A-RDN enhanced diuretic and natriuretic responses to GLP-1. Urine flow and Na+ excretion responses to GLP-1 were not significantly different between T-RDN and A-RDN groups. These results indicate that the diuretic and natriuretic effects of GLP-1 are partly governed via activation of afferent renal nerves by GLP-1 acting on sensory nerve fibers within the pelvis of the kidney.


Assuntos
Vias Aferentes/efeitos dos fármacos , Diurese/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Rim/efeitos dos fármacos , Rim/inervação , Natriurese/efeitos dos fármacos , Animais , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Denervação , Peptídeo 1 Semelhante ao Glucagon/biossíntese , Receptor do Peptídeo Semelhante ao Glucagon 1/biossíntese , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/imunologia , Células HEK293 , Humanos , Pelve Renal/efeitos dos fármacos , Pelve Renal/inervação , Masculino , Ratos , Ratos Sprague-Dawley , Circulação Renal/efeitos dos fármacos , Sódio/urina , Sistema Nervoso Simpático/efeitos dos fármacos , Urodinâmica/efeitos dos fármacos
8.
Am J Physiol Heart Circ Physiol ; 317(5): H958-H968, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490733

RESUMO

Previously we have shown that increased expression of renal epithelial sodium channels (ENaC) may contribute to the renal sodium and water retention observed during chronic heart failure (CHF). The goal of this study was to examine whether renal denervation (RDN) changed the expressions of renal sodium transporters ENaC, sodium-hydrogen exchanger-3 proteins (NHE3), and water channel aquaporin 2 (AQP2) in rats with CHF. CHF was produced by left coronary artery ligation in rats. Four weeks after ligation surgery, surgical bilateral RDN was performed. The expression of ENaC, NHE3, and AQP2 in both renal cortex and medulla were measured. As a functional test for ENaC activation, diuretic and natriuretic responses to ENaC inhibitor benzamil were monitored in four groups of rats (Sham, Sham+RDN, CHF, CHF+RDN). Western blot analysis indicated that RDN (1 wk later) significantly reduced protein levels of α-ENaC, ß-ENaC, γ-ENaC, and AQP2 in the renal cortex of CHF rats. RDN had no significant effects on the protein expression of kidney NHE3 in both Sham and CHF rats. Immunofluorescence studies of kidney sections confirmed the reduced signaling of ENaC and AQP2 in the CHF+RDN rats compared with the CHF rats. There were increases in diuretic and natriuretic responses to ENaC inhibitor benzamil in rats with CHF. RDN reduced the diuretic and natriuretic responses to benzamil in CHF rats. These findings suggest a critical role for renal nerves in the enhanced expression of ENaC and AQP2 and subsequent pathophysiology of renal sodium and water retention associated with CHF.NEW & NOTEWORTHY This is the first study to show in a comprehensive way that renal denervation initiated after a period of chronic heart failure reduces the expression of epithelial sodium channels and aquaporin 2 leading to reduced epithelial sodium channel function and sodium retention.


Assuntos
Aquaporina 2/metabolismo , Denervação Autônoma , Canais Epiteliais de Sódio/metabolismo , Insuficiência Cardíaca/metabolismo , Rim/inervação , Rim/metabolismo , Natriurese , Eliminação Renal , Sódio/urina , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Aquaporina 2/genética , Doença Crônica , Modelos Animais de Doenças , Diuréticos/farmacologia , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/efeitos dos fármacos , Canais Epiteliais de Sódio/genética , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/urina , Rim/efeitos dos fármacos , Masculino , Natriurese/efeitos dos fármacos , Ratos Sprague-Dawley , Eliminação Renal/efeitos dos fármacos
9.
Nitric Oxide ; 87: 73-82, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30878404

RESUMO

Exercise training (ExT) is an established non-pharmacological therapy that improves the health and quality of life in patients with chronic heart failure (CHF). Exaggerated sympathetic drive characterizes CHF due to an imbalance of the autonomic nervous system. Neuronal nitric oxide synthase (nNOS) in the paraventricular nucleus (PVN) produce nitric oxide (NO•), which is known to regulate the sympathetic tone. Previously we have shown that during CHF, the catalytically active dimeric form of nNOS is significantly decreased with a concurrent increase in protein inhibitor of nNOS (PIN) expression, a protein that dissociates dimeric nNOS to monomers and facilitates its degradation. Dimerization of nNOS also requires (6R)-5,6,7,8-tetrahydrobiopterin (BH4) for stability and activity. Previously, we have shown that ExT improves NO-mediated sympathetic inhibition in the PVN; however, the molecular mechanism remains elusive. We hypothesized; ExT restores the sympathetic drive by increasing the levels and catalytically active form of nNOS by abrogating changes in the PIN in the PVN of CHF rats. CHF was induced in adult male Sprague-Dawley rats by coronary artery ligation, which reliably mimics CHF in patients with myocardial infarction. After 4 weeks of surgery, Sham and CHF rats were subjected to 3 weeks of progressive treadmill exercise. ExT significantly (p < 0.05) decreased PIN expression and increased dimer/monomer ratio of nNOS in the PVN of rats with CHF. Moreover, we found decreased GTP cyclohydrolase 1(GCH1) expression: a rate-limiting enzyme for BH4 biosynthesis in the PVN of CHF rats suggesting that perhaps reduced BH4 availability may also contribute to decreased nNOS dimers. Interestingly, CHF induced decrease in GCH1 expression was increased with ExT. Our findings revealed that ExT rectified decreased PIN and GCH1 expression and increased dimer/monomer ratio of nNOS in the PVN, which may lead to increase NO• bioavailability resulting in amelioration of activated sympathetic drive during CHF.


Assuntos
Insuficiência Cardíaca/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Condicionamento Físico Animal/fisiologia , Multimerização Proteica/fisiologia , Animais , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Doença Crônica , Dineínas do Citoplasma/metabolismo , GTP Cicloidrolase/metabolismo , Masculino , Ratos Sprague-Dawley
10.
Am J Physiol Regul Integr Comp Physiol ; 308(5): R360-9, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25540101

RESUMO

Oxytocin (Oxt), a neuropeptide produced in the hypothalamus, is implicated in regulation of feeding. Recent studies have shown that peripheral administration of Oxt suppresses feeding and, when infused subchronically, ameliorates hyperphagic obesity. However, the route through which peripheral Oxt informs the brain is obscure. This study aimed to explore whether vagal afferents mediate the sensing and anorexigenic effect of peripherally injected Oxt in mice. Intraperitoneal Oxt injection suppressed food intake and increased c-Fos expression in nucleus tractus solitarius to which vagal afferents project. The Oxt-induced feeding suppression and c-Fos expression in nucleus tractus solitarius were blunted in mice whose vagal afferent nerves were blocked by subdiaphragmatic vagotomy or capsaicin treatment. Oxt induced membrane depolarization and increases in cytosolic Ca(2+) concentration ([Ca(2+)]i) in single vagal afferent neurons. The Oxt-induced [Ca(2+)]i increases were markedly suppressed by Oxt receptor antagonist. These Oxt-responsive neurons also responded to cholecystokinin-8 and contained cocaine- and amphetamine-regulated transcript. In obese diabetic db/db mice, leptin failed to increase, but Oxt increased [Ca(2+)]i in vagal afferent neurons, and single or subchronic infusion of Oxt decreased food intake and body weight gain. These results demonstrate that peripheral Oxt injection suppresses food intake by activating vagal afferent neurons and thereby ameliorates obesity in leptin-resistant db/db mice. The peripheral Oxt-regulated vagal afferent neuron provides a novel target for treating hyperphagia and obesity.


Assuntos
Fármacos Antiobesidade/administração & dosagem , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Hiperfagia/tratamento farmacológico , Obesidade/tratamento farmacológico , Ocitocina/administração & dosagem , Nervo Vago/efeitos dos fármacos , Potenciais de Ação , Animais , Depressores do Apetite/administração & dosagem , Cálcio/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação para Baixo , Hiperfagia/fisiopatologia , Injeções Intraperitoneais , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Obesidade/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fármacos do Sistema Sensorial/farmacologia , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiopatologia , Fatores de Tempo , Vagotomia , Nervo Vago/metabolismo , Nervo Vago/fisiopatologia , Aumento de Peso/efeitos dos fármacos
11.
Biochem Biophys Res Commun ; 451(2): 276-81, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25089000

RESUMO

Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetic patients and shown to reduce food intake and body weight. The anorexigenic effects of GLP-1 and GLP-1 receptor agonists are thought to be mediated primarily via the hypothalamic paraventricular nucleus (PVN). GLP-1, an intestinal hormone, is also localized in the nucleus tractus solitarius (NTS) of the brain stem. However, the role of endogenous GLP-1, particularly that in the NTS neurons, in feeding regulation remains to be established. The present study examined whether the NTS GLP-1 neurons project to PVN and whether the endogenous GLP-1 acts on PVN to restrict feeding. Intra-PVN injection of GLP-1 receptor antagonist exendin (9-39) increased food intake. Injection of retrograde tracer into PVN combined with immunohistochemistry for GLP-1 in NTS revealed direct projection of NTS GLP-1 neurons to PVN. Moreover, GLP-1 evoked Ca(2+) signaling in single neurons isolated from PVN. The majority of GLP-1-responsive neurons were immunoreactive predominantly to corticotropin-releasing hormone (CRH) and nesfatin-1, and less frequently to oxytocin. These results indicate that endogenous GLP-1 targets PVN to restrict feeding behavior, in which the projection from NTS GLP-1 neurons and activation of CRH and nesfatin-1 neurons might be implicated. This study reveals a neuronal basis for the anorexigenic effect of endogenous GLP-1 in the brain.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Hormônio Liberador da Corticotropina/fisiologia , Proteínas de Ligação a DNA/fisiologia , Ingestão de Alimentos/fisiologia , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Ocitocina/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Núcleo Solitário/fisiologia , Animais , Sinalização do Cálcio , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Masculino , Microinjeções , Vias Neurais/fisiologia , Neurônios/fisiologia , Nucleobindinas , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Ratos , Ratos Wistar , Receptores de Glucagon/antagonistas & inibidores
12.
Hypertens Res ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831091

RESUMO

The efficacy of renal denervation (RDN) has been controversial, but recent randomized sham-controlled trials demonstrated significant blood pressure reductions after RDN in patients with hypertension. We conducted a systematic review and updated meta-analysis to evaluate the effects of RDN on ambulatory and office blood pressures in patients with hypertension. Databases were searched up to 15 November 2023 to identify randomized, sham-controlled trials of RDN. The primary endpoint was change in 24 h ambulatory systolic blood pressure (SBP) with RDN versus sham control. The secondary endpoints were changes in 24 h ambulatory diastolic blood pressure, daytime and nighttime blood pressure (BP), office BP, and home BP. A sub-analysis determined outcomes by medication, procedure, and device. From twelve trials, 2222 patients with hypertension were randomized to undergo RDN (n = 1295) or a sham procedure (n = 927). At 2-6 months after treatment, RDN significantly reduced 24 h ambulatory SBP by 2.81 mmHg (95% confidence interval: -4.09, -1.53; p < 0.001) compared with the sham procedure. RDN also reduced daytime SBP by 3.17 mmHg (- 4.75, - 1.58; p < 0.001), nighttime SBP by 3.41 mmHg (- 4.69, - 2.13; p < 0.001), office SBP by 4.95 mmHg (- 6.37, - 3.54; p < 0.001), and home SBP by 4.64 mmHg (- 7.44, - 1.84; p = 0.001) versus the sham control group. There were no significant differences in the magnitude of BP reduction between first- and second-generation trials, between devices, or between with or without medication. These data from randomized sham-controlled trials showed that RDN significantly reduced all blood pressure metrics in medicated or unmedicated patients with hypertension, including resistant/uncontrolled hypertension.

13.
Hypertens Res ; 47(1): 6-32, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37710033

RESUMO

Total 276 manuscripts were published in Hypertension Research in 2022. Here our editorial members picked up the excellent papers, summarized the current topics from the published papers and discussed future perspectives in the sixteen fields. We hope you enjoy our special feature, 2023 update and perspectives in Hypertension Research.


Assuntos
Hipertensão , Fator de Impacto de Revistas , Humanos , Hipertensão/terapia
14.
Hypertens Res ; 46(6): 1462-1470, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36991064

RESUMO

Inappropriate sympathetic activation is closely associated with the development and progression of hypertension. Renal denervation (RDN) is a neuromodulation therapy performed using an intraarterial catheter in patients with hypertension. Recent randomized sham-operated controlled trials have shown that RDN has significant antihypertensive effects that last for at least 3 years. Based on this evidence, RDN is nearly ready for general clinical application. On the other hand, there are remaining issues to be addressed, including elucidation of the precise antihypertensive mechanisms of RDN, the appropriate endpoint of RDN during the procedure, and the association between reinnervation after RDN and the long-term effects of RDN. This mini review focuses on studies implicating anatomy of the renal nerves, which consist of afferent or efferent and sympathetic or parasympathetic nerves, the response of blood pressure to renal nerve stimulation, and reinnervation of renal nerves after RDN. A comprehensive understanding of the anatomical and functional aspects of the renal nerves and the antihypertensive mechanisms of RDN, including its long-term effects, will enhance our ability to incorporate RDN into strategies to treat hypertension in clinical practice. This mini review focuses on studies implicating anatomy of the renal nerves, which consist of afferent or efferent and sympathetic or parasympathetic nerves, the response of blood pressure to renal nerve stimulation, and reinnervation of renal nerves after renal denervation. Whether the ablation site is sympathetic dominant or parasympathetic dominant, and afferent dominant or efferent dominant, would in turn determine the final output of renal denervation. BP: blood pressure.


Assuntos
Anti-Hipertensivos , Hipertensão , Humanos , Anti-Hipertensivos/farmacologia , Simpatectomia/métodos , Hipertensão/cirurgia , Rim , Pressão Sanguínea/fisiologia , Denervação/métodos , Resultado do Tratamento
15.
Front Physiol ; 14: 1277065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169715

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a heterogenous clinical syndrome characterized by diastolic dysfunction, concentric cardiac left ventricular (LV) hypertrophy, and myocardial fibrosis with preserved systolic function. However, the underlying mechanisms of HFpEF are not clear. We hypothesize that an enhanced central sympathetic drive is sufficient to induce LV dysfunction and HFpEF in rats. Male Sprague-Dawley rats were subjected to central infusion of either saline controls (saline) or angiotensin II (Ang II, 20 ng/min, i.c.v) via osmotic mini-pumps for 14 days to elicit enhanced sympathetic drive. Echocardiography and invasive cardiac catheterization were used to measure systolic and diastolic functions. Mean arterial pressure, heart rate, left ventricular end-diastolic pressure (LVEDP), and ± dP/dt changes in responses to isoproterenol (0.5 µg/kg, iv) were measured. Central infusion of Ang II resulted in increased sympatho-excitation with a consequent increase in blood pressure. Although the ejection fraction was comparable between the groups, there was a decrease in the E/A ratio (saline: 1.5 ± 0.2 vs Ang II: 1.2 ± 0.1). LVEDP was significantly increased in the Ang II-treated group (saline: 1.8 ± 0.2 vs Ang II: 4.6 ± 0.5). The increase in +dP/dt to isoproterenol was not significantly different between the groups, but the response in -dP/dt was significantly lower in Ang II-infused rats (saline: 11,765 ± 708 mmHg/s vs Ang II: 8,581 ± 661). Ang II-infused rats demonstrated an increased heart to body weight ratio, cardiomyocyte hypertrophy, and fibrosis. There were elevated levels of atrial natriuretic peptide and interleukin-6 in the Ang II-infused group. In conclusion, central infusion of Ang II in rats induces sympatho-excitation with concurrent diastolic dysfunction, pathological cardiac concentric hypertrophy, and cardiac fibrosis. This novel model of centrally mediated sympatho-excitation demonstrates characteristic diastolic dysfunction in rats, representing a potentially useful preclinical murine model of HFpEF to investigate various altered underlying mechanisms during HFpEF in future studies.

16.
Hypertens Res ; 46(1): 268-279, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369375

RESUMO

The activation of sympathetic nervous system plays a critical role in the development of hypertension. The input from afferent renal nerves may affect central sympathetic outflow; however, its contribution to the development of hypertension remains unclear. We investigated the role of afferent renal nerves in acute and chronic blood pressure regulation using normotensive Wistar-Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). Acute chemical stimulation of afferent renal nerves elicited larger increases in blood pressure and renal sympathetic nerve activity in young 9-week-old SHRSP compared to WKY. Selective afferent renal denervation (ARDN) and conventional total renal denervation (TRDN) ablating both afferent and efferent nerves in young SHRSP revealed that only TRDN, but not ARDN, chronically attenuated blood pressure elevation. ARDN did not affect plasma renin activity or plasma angiotensin II levels, whereas TRDN decreased both. Neither TRDN nor ARDN affected central sympathetic outflow and systemic sympathetic activity determined by neuronal activity in the parvocellular region of hypothalamic paraventricular nucleus and rostral ventrolateral medulla and by plasma and urinary norepinephrine levels, respectively. Renal injury was not apparent in young SHRSP compared with WKY, suggesting that renal afferent input might not be activated in young SHRSP. In conclusion, the chronic input from afferent renal nerves does not contribute to the development of hypertension in SHRSP despite the increased blood pressure response to the acute stimulation of afferent renal nerves. Efferent renal nerves may be involved in the development of hypertension via activation of the renin-angiotensin system in SHRSP.


Assuntos
Hipertensão , Acidente Vascular Cerebral , Ratos , Animais , Ratos Endogâmicos SHR , Pressão Sanguínea/fisiologia , Ratos Endogâmicos WKY , Sistema Nervoso Simpático , Rim , Proteínas Musculares , Peptídeos e Proteínas de Sinalização Intracelular
17.
Hypertens Res ; 45(2): 198-209, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34921299

RESUMO

Renal nerves have critical roles in regulating blood pressure and fluid volume, and their dysfunction is closely related with cardiovascular diseases. Renal nerves are composed of sympathetic efferent and sensory afferent nerves. Activation of the efferent renal sympathetic nerves induces renin secretion, sodium absorption, and increased renal vascular resistance, which lead to increased blood pressure and fluid retention. Afferent renal sensory nerves, which are densely innervated in the renal pelvic wall, project to the hypothalamic paraventricular nucleus in the brain to modulate sympathetic outflow to the periphery, including the heart, kidneys, and arterioles. The effects of renal denervation on the cardiovascular system are mediated by both efferent denervation and afferent denervation. The first half of this review focuses on basic research using animal models of hypertension and heart failure, and addresses the therapeutic effects of renal denervation for hypertension and heart failure, including underlying mechanisms. The second half of this review focuses on clinical research related to catheter-based renal denervation in patients with hypertension. Randomized sham-controlled trials using second-generation devices, endovascular radiofrequency-based devices and ultrasound-based devices are reviewed and their results are assessed. This review summarizes the basic and clinical evidence of renal denervation to date, and discusses future prospects and potential developments in renal denervation therapy for cardiovascular diseases.


Assuntos
Hipertensão , Rim , Animais , Pressão Sanguínea , Denervação , Humanos , Simpatectomia , Sistema Nervoso Simpático
18.
Hypertens Res ; 45(8): 1276-1297, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35790879

RESUMO

In 2021, 217 excellent manuscripts were published in Hypertension Research. Editorial teams greatly appreciate the authors' contribution to hypertension research progress. Here, our editorial members have summarized twelve topics from published work and discussed current topics in depth. We hope you enjoy our special feature, "Update on Hypertension Research in 2021".


Assuntos
Políticas Editoriais , Hipertensão , Humanos , Hipertensão/tratamento farmacológico
19.
Circ Heart Fail ; 14(12): e008365, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34789005

RESUMO

BACKGROUND: Recent clinical studies demonstrate that SGLT2 (sodium-glucose cotransporter 2) inhibitors ameliorate heart failure (HF). The present study was conducted to assess the expression and function of renal SGLT2 and the influence of enhanced renal sympathetic tone in HF. METHODS: Four weeks after coronary artery ligation surgery to induce HF, surgical bilateral renal denervation (RDN) was performed in rats. Four groups of rats (Sham-operated control [Sham], Sham+RDN, HF and HF+RDN; n=6/group) were used. Immunohistochemistry and Western blot analysis were performed to evaluate the renal SGLT2 expression. One week after RDN (5 weeks after induction of HF), intravenous injection of SGLT2 inhibitor dapagliflozin were performed to assess renal excretory responses. In vitro, human embryonic kidney cells were used to investigate the fractionation of SGLT2 after norepinephrine treatment. RESULTS: In rats with HF, (1) SGLT2 expression in the proximal tubule of the kidney was increased; (2) the response of increases in urine flow, sodium excretion, and glucose excretion to dapagliflozin were greater; and (3) RDN attenuated renal SGLT2 expression and normalized renal functional responses to dapagliflozin. In vitro, norepinephrine promoted translocation of SGLT2 to the cell membrane. CONCLUSIONS: These results indicate that the enhanced tonic renal sympathetic nerve activation in HF increases the expression and functional activity of renal SGLT2. Potentiated trafficking of SGLT2 to cell surface in renal proximal tubules mediated by norepinephrine may contribute to this functional activation of SGLT2 in HF. These findings provide critical insight into the underlying mechanisms for the beneficial effects of SGLT2 inhibitors on HF reported in the clinical studies.


Assuntos
Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Rim/inervação , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Glucose/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Ratos Sprague-Dawley , Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia
20.
Front Physiol ; 12: 718982, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912235

RESUMO

Aims: Hypertension increases the risk of heart disease. Hallmark features of hypertensive heart disease is sympathoexcitation and cardiac mitochondrial abnormality. However, the molecular mechanisms for specifically neurally mediated mitochondrial abnormality and subsequent cardiac dysfunction are unclear. We hypothesized that enhanced sympatho-excitation to the heart elicits cardiac miR-18a-5p/HIF-1α and mitochondrial unfolded protein response (UPRmt) signaling that lead to mitochondrial abnormalities and consequent pathological cardiac remodeling. Methods and Results: Using a model of neurogenic hypertension (NG-HTN), induced by intracerebroventricular (ICV) infusion of Ang II (NG-HTN; 20 ng/min, 14 days, 0.5 µl/h, or Saline; Control, 0.9%) through osmotic mini-pumps in Sprague-Dawley rats (250-300 g), we attempted to identify a link between sympathoexcitation (norepinephrine; NE), miRNA and HIF-1α signaling and UPRmt to produce mitochondrial abnormalities resulting in cardiomyopathy. Cardiac remodeling, mitochondrial abnormality, and miRNA/HIF-1α signaling were assessed using histology, immunocytochemistry, electron microscopy, Western blotting or RT-qPCR. NG-HTN demonstrated increased sympatho-excitation with concomitant reduction in UPRmt, miRNA-18a-5p and increased level of HIF-1α in the heart. Our in silico analysis indicated that miR-18a-5p targets HIF-1α. Direct effects of NE on miRNA/HIF-1α signaling and mitochondrial abnormality examined using H9c2 rat cardiomyocytes showed NE reduces miR-18a-5p but increases HIF-1α. Electron microscopy revealed cardiac mitochondrial abnormality in NG-HTN, linked with hypertrophic cardiomyopathy and fibrosis. Mitochondrial unfolded protein response was decreased in NG-HTN indicating mitochondrial proteinopathy and proteotoxic stress, associated with increased mito-ROS and decreased mitochondrial membrane potential (ΔΨm), and oxidative phosphorylation. Further, there was reduced cardiac mitochondrial biogenesis and fusion, but increased mitochondrial fission, coupled with mitochondrial impaired TIM-TOM transport and UPRmt. Direct effects of NE on H9c2 rat cardiomyocytes also showed cardiomyocyte hypertrophy, increased mitochondrial ROS generation, and UPRmt corroborating the in vivo data. Conclusion: In conclusion, enhanced sympatho-excitation suppress miR-18a-5p/HIF-1α signaling and increased mitochondrial stress proteotoxicity, decreased UPRmt leading to decreased mitochondrial dynamics/OXPHOS/ΔΨm and ROS generation. Taken together, these results suggest that ROS induced mitochondrial transition pore opening activates pro-hypertrophy/fibrosis/inflammatory factors that induce pathological cardiac hypertrophy and fibrosis commonly observed in NG-HTN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA