Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
PLoS Biol ; 20(7): e3001537, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35877759

RESUMO

Gustatory cortex (GC), a structure deeply involved in the making of consumption decisions, presumably performs this function by integrating information about taste, experiences, and internal states related to the animal's health, such as illness. Here, we investigated this assertion, examining whether illness is represented in GC activity, and how this representation impacts taste responses and behavior. We recorded GC single-neuron activity and local field potentials (LFPs) from healthy rats and rats made ill (via LiCl injection). We show (consistent with the extant literature) that the onset of illness-related behaviors arises contemporaneously with alterations in 7 to 12 Hz LFP power at approximately 12 min following injection. This process was accompanied by reductions in single-neuron taste response magnitudes and discriminability, and with enhancements in palatability-relatedness-a result reflecting the collapse of responses toward a simple "good-bad" code visible in the entire sample, but focused on a specific subset of GC neurons. Overall, our data show that a state (illness) that profoundly reduces consumption changes basic properties of the sensory cortical response to tastes, in a manner that can easily explain illness' impact on consumption.


Assuntos
Percepção Gustatória , Paladar , Animais , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Ratos , Ratos Long-Evans , Paladar/fisiologia
2.
J Neurosci ; 43(3): 386-404, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36443002

RESUMO

Gustatory cortical (GC) single-neuron taste responses reflect taste quality and palatability in successive epochs. Ensemble analyses reveal epoch-to-epoch firing-rate changes in these responses to be sudden, coherent transitions. Such nonlinear dynamics suggest that GC is part of a recurrent network, producing these dynamics in concert with other structures. Basolateral amygdala (BLA), which is reciprocally connected to GC and central to hedonic processing, is a strong candidate partner for GC, in that BLA taste responses evolve on the same general clock as GC and because inhibition of activity in the BLA→GC pathway degrades the sharpness of GC transitions. These facts motivate, but do not test, our overarching hypothesis that BLA and GC act as a single, comodulated network during taste processing. Here, we provide just this test of simultaneous (BLA and GC) extracellular taste responses in female rats, probing the multiregional dynamics of activity to directly test whether BLA and GC responses contain coupled dynamics. We show that BLA and GC response magnitudes covary across trials and within single responses, and that changes in BLA-GC local field potential phase coherence are epoch specific. Such classic coherence analyses, however, obscure the most salient facet of BLA-GC coupling: sudden transitions in and out of the epoch known to be involved in driving gaping behavior happen near simultaneously in the two regions, despite huge trial-to-trial variability in transition latencies. This novel form of inter-regional coupling, which we show is easily replicated in model networks, suggests collective processing in a distributed neural network.SIGNIFICANCE STATEMENT There has been little investigation into real-time communication between brain regions during taste processing, a fact reflecting the dominant belief that taste circuitry is largely feedforward. Here, we perform an in-depth analysis of real-time interactions between GC and BLA in response to passive taste deliveries, using both conventional coherence metrics and a novel methodology that explicitly considers trial-to-trial variability and fast single-trial dynamics in evoked responses. Our results demonstrate that BLA-GC coherence changes as the taste response unfolds, and that BLA and GC specifically couple for the sudden transition into (and out of) the behaviorally relevant neural response epoch, suggesting (although not proving) that: (1) recurrent interactions subserve the function of the dyad as (2) a putative attractor network.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Paladar , Animais , Feminino , Ratos , Córtex Cerebral/fisiologia , Paladar/fisiologia , Percepção Gustatória/fisiologia
3.
PLoS Comput Biol ; 17(9): e1009012, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34555012

RESUMO

Decisions as to whether to continue with an ongoing activity or to switch to an alternative are a constant in an animal's natural world, and in particular underlie foraging behavior and performance in food preference tests. Stimuli experienced by the animal both impact the choice and are themselves impacted by the choice, in a dynamic back and forth. Here, we present model neural circuits, based on spiking neurons, in which the choice to switch away from ongoing behavior instantiates this back and forth, arising as a state transition in neural activity. We analyze two classes of circuit, which differ in whether state transitions result from a loss of hedonic input from the stimulus (an "entice to stay" model) or from aversive stimulus-input (a "repel to leave" model). In both classes of model, we find that the mean time spent sampling a stimulus decreases with increasing value of the alternative stimulus, a fact that we linked to the inclusion of depressing synapses in our model. The competitive interaction is much greater in "entice to stay" model networks, which has qualitative features of the marginal value theorem, and thereby provides a framework for optimal foraging behavior. We offer suggestions as to how our models could be discriminatively tested through the analysis of electrophysiological and behavioral data.


Assuntos
Tomada de Decisões , Comportamento Alimentar , Preferências Alimentares , Modelos Teóricos , Animais , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Paladar
4.
J Neurosci ; 39(16): 3057-3069, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30777885

RESUMO

An animal's survival depends on finding food and the memory of food and contexts are often linked. Given that the hippocampus is required for spatial and contextual memory, it is reasonable to expect related coding of space and food stimuli in hippocampal neurons. However, relatively little is known about how the hippocampus responds to tastes, the most central sensory property of food. In this study, we examined the taste-evoked responses and spatial firing properties of single units in the dorsal CA1 hippocampal region as male rats received a battery of taste stimuli differing in both chemical composition and palatability within a specific spatial context. We identified a subset of hippocampal neurons that responded to tastes, some of which were place cells. These taste and place responses had a distinct interaction: taste-responsive cells tended to have less spatially specific firing fields and place cells only responded to tastes delivered inside their place field. Like neurons in the amygdala and lateral hypothalamus, hippocampal neurons discriminated between tastes predominantly on the basis of palatability, with taste selectivity emerging concurrently with palatability-relatedness; these responses did not reflect movement or arousal. However, hippocampal taste responses emerged several hundred milliseconds later than responses in other parts of the taste system, suggesting that the hippocampus does not influence real-time taste decisions, instead associating the hedonic value of tastes with a particular context. This incorporation of taste responses into existing hippocampal maps could be one way that animals use past experience to locate food sources.SIGNIFICANCE STATEMENT Finding food is essential for animals' survival and taste and context memory are often linked. Although hippocampal responses to space and contexts have been well characterized, little is known about how the hippocampus responds to tastes. Here, we identified a subset of hippocampal neurons that discriminated between tastes based on palatability. Cells with stronger taste responses typically had weaker spatial responses and taste responses were confined to place cells' firing fields. Hippocampal taste responses emerged later than in other parts of the taste system, suggesting that the hippocampus does not influence taste decisions, but rather associates the hedonic value of tastes consumed within a particular context. This could be one way that animals use past experience to locate food sources.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Percepção Espacial/fisiologia , Percepção Gustatória/fisiologia , Animais , Masculino , Memória/fisiologia , Ratos , Ratos Long-Evans
5.
J Neurophysiol ; 122(4): 1342-1356, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31339800

RESUMO

Electrophysiological analysis has revealed much about the broad coding and neural ensemble dynamics that characterize gustatory cortical (GC) taste processing in awake rats and about how these dynamics relate to behavior. With regard to mice, however, data concerning cortical taste coding have largely been restricted to imaging, a technique that reveals average levels of neural responsiveness but that (currently) lacks the temporal sensitivity necessary for evaluation of fast response dynamics; furthermore, the few extant studies have thus far failed to provide consensus on basic features of coding. We have recorded the spiking activity of ensembles of GC neurons while presenting representatives of the basic taste modalities (sweet, salty, sour, and bitter) to awake mice. Our first central result is the identification of similarities between rat and mouse taste processing: most mouse GC neurons (~66%) responded distinctly to multiple (3-4) tastes; temporal coding analyses further reveal, for the first time, that single mouse GC neurons sequentially code taste identity and palatability, the latter responses emerging ~0.5 s after the former, with whole GC ensembles transitioning suddenly and coherently from coding taste identity to coding taste palatability. The second finding is that spatial location plays very little role in any aspect of taste responses: neither between- (anterior-posterior) nor within-mouse (dorsal-ventral) mapping revealed anatomic regions with narrow or temporally simple taste responses. These data confirm recent results showing that mouse cortical taste responses are not "gustotopic" but also go beyond these imaging results to show that mice process tastes through time.NEW & NOTEWORTHY Here, we analyzed taste-related spiking activity in awake mouse gustatory cortical (GC) neural ensembles, revealing deep similarities between mouse cortical taste processing and that repeatedly demonstrated in rat: mouse GC ensembles code multiple aspects of taste in a coarse-coded, time-varying manner that is essentially invariant across the spatial extent of GC. These data demonstrate that, contrary to some reports, cortical network processing is distributed, rather than being separated out into spatial subregion.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Percepção Gustatória/fisiologia , Paladar/fisiologia , Potenciais de Ação , Animais , Feminino , Lobo Frontal/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Neurológicos
6.
Chem Senses ; 44(4): 237-247, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30788507

RESUMO

The gustatory system encodes information about chemical identity, nutritional value, and concentration of sensory stimuli before transmitting the signal from taste buds to central neurons that process and transform the signal. Deciphering the coding logic for taste quality requires examining responses at each level along the neural axis-from peripheral sensory organs to gustatory cortex. From the earliest single-fiber recordings, it was clear that some afferent neurons respond uniquely and others to stimuli of multiple qualities. There is frequently a "best stimulus" for a given neuron, leading to the suggestion that taste exhibits "labeled line coding." In the extreme, a strict "labeled line" requires neurons and pathways dedicated to single qualities (e.g., sweet, bitter, etc.). At the other end of the spectrum, "across-fiber," "combinatorial," or "ensemble" coding requires minimal specific information to be imparted by a single neuron. Instead, taste quality information is encoded by simultaneous activity in ensembles of afferent fibers. Further, "temporal coding" models have proposed that certain features of taste quality may be embedded in the cadence of impulse activity. Taste receptor proteins are often expressed in nonoverlapping sets of cells in taste buds apparently supporting "labeled lines." Yet, taste buds include both narrowly and broadly tuned cells. As gustatory signals proceed to the hindbrain and on to higher centers, coding becomes more distributed and temporal patterns of activity become important. Here, we present the conundrum of taste coding in the light of current electrophysiological and imaging techniques at several levels of the gustatory processing pathway.


Assuntos
Neurônios/fisiologia , Reconhecimento Psicológico/fisiologia , Papilas Gustativas/fisiologia , Paladar/fisiologia , Animais , Humanos , Estimulação Química
7.
Learn Mem ; 25(11): 587-600, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30322892

RESUMO

The strength of learned associations between pairs of stimuli is affected by multiple factors, the most extensively studied of which is prior experience with the stimuli themselves. In contrast, little data is available regarding how experience with "incidental" stimuli (independent of any conditioning situation) impacts later learning. This lack of research is striking given the importance of incidental experience to survival. We have recently begun to fill this void using conditioned taste aversion (CTA), wherein an animal learns to avoid a taste that has been associated with malaise. We previously demonstrated that incidental exposure to salty and sour tastes (taste preexposure-TPE) enhances aversions learned later to sucrose. Here, we investigate the neurobiology underlying this phenomenon. First, we use immediate early gene (c-Fos) expression to identify gustatory cortex (GC) as a site at which TPE specifically increases the neural activation caused by taste-malaise pairing (i.e., TPE did not change c-Fos induced by either stimulus in isolation). Next, we use site-specific infection with the optical silencer Archaerhodopsin-T to show that GC inactivation during TPE inhibits the expected enhancements of both learning and CTA-related c-Fos expression, a full day later. Thus, we conclude that GC is almost certainly a vital part of the circuit that integrates incidental experience into later associative learning.


Assuntos
Córtex Cerebral/fisiologia , Aprendizagem/fisiologia , Percepção Gustatória/fisiologia , Animais , Córtex Cerebral/citologia , Ácido Cítrico , Sacarose Alimentar , Feminino , Expressão Gênica , Imuno-Histoquímica , Optogenética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Distribuição Aleatória , Ratos Long-Evans , Cloreto de Sódio
8.
J Neurosci ; 36(20): 5596-607, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27194338

RESUMO

UNLABELLED: Rats produce robust, highly distinctive orofacial rhythms in response to taste stimuli-responses that aid in the consumption of palatable tastes and the ejection of aversive tastes, and that are sourced in a multifunctional brainstem central pattern generator. Several pieces of indirect evidence suggest that primary gustatory cortex (GC) may be a part of a distributed forebrain circuit involved in the selection of particular consumption-related rhythms, although not in the production of individual mouth movements per se. Here, we performed a series of tests of this hypothesis. We first examined the temporal relationship between GC activity and orofacial behaviors by performing paired single-neuron and electromyographic recordings in awake rats. Using a trial-by-trial analysis, we found that a subset of GC neurons shows a burst of activity beginning before the transition between nondistinct and taste-specific (i.e., consumption-related) orofacial rhythms. We further showed that shifting the latency of consumption-related behavior by selective cueing has an analogous impact on the timing of GC activity. Finally, we showed the complementary result, demonstrating that optogenetic perturbation of GC activity has a modest but significant impact on the probability that a specific rhythm will be produced in response to a strongly aversive taste. GC appears to be a part of a distributed circuit that governs the selection of taste-induced orofacial rhythms. SIGNIFICANCE STATEMENT: In many well studied (typically invertebrate) sensorimotor systems, top-down modulation helps motor-control regions "select" movement patterns. Here, we provide evidence that gustatory cortex (GC) may be part of the forebrain circuit that performs this function in relation to oral behaviors ("gapes") whereby a substance in the mouth is rejected as unpalatable. We show that GC palatability coding is well timed to play this role, and that the latency of these codes changes as the latency of gaping shifts with learning. We go on to show that by silencing these neurons, we can change the likelihood of gaping. These data help to break down the sensory/motor divide by showing a role for sensory cortex in the selection of motor behavior.


Assuntos
Potenciais Somatossensoriais Evocados , Movimento , Córtex Somatossensorial/fisiologia , Animais , Feminino , Boca/fisiologia , Neurônios/fisiologia , Periodicidade , Ratos , Ratos Long-Evans , Tempo de Reação , Córtex Somatossensorial/citologia , Percepção Gustatória
9.
J Neurosci ; 36(3): 655-69, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26791199

RESUMO

Whereas many laboratory-studied decisions involve a highly trained animal identifying an ambiguous stimulus, many naturalistic decisions do not. Consumption decisions, for instance, involve determining whether to eject or consume an already identified stimulus in the mouth and are decisions that can be made without training. By standard analyses, rodent cortical single-neuron taste responses come to predict such consumption decisions across the 500 ms preceding the consumption or rejection itself; decision-related firing emerges well after stimulus identification. Analyzing single-trial ensemble activity using hidden Markov models, we show these decision-related cortical responses to be part of a reliable sequence of states (each defined by the firing rates within the ensemble) separated by brief state-to-state transitions, the latencies of which vary widely between trials. When we aligned data to the onset of the (late-appearing) state that dominates during the time period in which single-neuron firing is correlated to taste palatability, the apparent ramp in stimulus-aligned choice-related firing was shown to be a much more precipitous coherent jump. This jump in choice-related firing resembled a step function more than it did the output of a standard (ramping) decision-making model, and provided a robust prediction of decision latency in single trials. Together, these results demonstrate that activity related to naturalistic consumption decisions emerges nearly instantaneously in cortical ensembles. Significance statement: This paper provides a description of how the brain makes evaluative decisions. The majority of work on the neurobiology of decision making deals with "what is it?" decisions; out of this work has emerged a model whereby neurons accumulate information about the stimulus in the form of slowly increasing firing rates and reach a decision when those firing rates reach a threshold. Here, we study a different kind of more naturalistic decision--a decision to evaluate "what shall I do with it?" after the identity of a taste in the mouth has been identified--and show that this decision is not made through the gradual increasing of stimulus-related firing, but rather that this decision appears to be made in a sudden moment of "insight."


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Comportamento de Escolha/fisiologia , Percepção Gustatória/fisiologia , Animais , Eletromiografia/métodos , Feminino , Método de Monte Carlo , Ratos Long-Evans
10.
J Neurosci ; 36(41): 10654-10662, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733615

RESUMO

In neuroscientists' attempts to understand the long-term storage of memory, topics of particular importance and interest are the cellular and system mechanisms of maintenance (e.g., those sensitive to ζ-inhibitory peptide, ZIP) and those induced by memory retrieval (i.e., reconsolidation). Much is known about each of these processes in isolation, but less is known concerning how they interact. It is known that ZIP sensitivity and memory retrieval share at least some molecular targets (e.g., recycling α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA, receptors to the plasma membrane); conversely, the fact that sensitivity to ZIP emerges only after consolidation ends suggests that consolidation (and by extension reconsolidation) and maintenance might be mutually exclusive processes, the onset of one canceling the other. Here, we use conditioned taste aversion (CTA) in rats, a cortically dependent learning paradigm, to test this hypothesis. First, we demonstrate that ZIP infusions into gustatory cortex begin interfering with CTA memory 43-45 h after memory acquisition-after consolidation ends. Next, we show that a retrieval trial administered after this time point interrupts the ability of ZIP to induce amnesia and that ZIP's ability to induce amnesia is reengaged only 45 h after retrieval. This pattern of results suggests that memory retrieval and ZIP-sensitive maintenance mechanisms are mutually exclusive and that the progression from one to the other are similar after acquisition and retrieval. They also reveal concrete differences between ZIP-sensitive mechanisms induced by acquisition and retrieval: the latency with which ZIP-sensitive mechanisms are expressed differ for the two processes. SIGNIFICANCE STATEMENT: Memory retrieval and the molecular mechanisms that are sensitive to ζ-inhibitory peptide (ZIP) are the few manipulations that have been shown to effect memory maintenance. Although much is known about their effect on maintenance separately, it is unknown how they interact. Here, we describe a model for the interaction between memory retrieval and ZIP-sensitive mechanisms, showing that retrieval trials briefly (i.e., for 45 h) interrupt these mechanisms. ZIP sensitivity emerges across a similar time window after memory acquisition and retrieval; the maintenance mechanisms that follow acquisition and retrieval differ, however, in the latency with which the impact of ZIP is expressed.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Lipopeptídeos/farmacologia , Memória/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Paladar/efeitos dos fármacos , Amnésia/induzido quimicamente , Amnésia/psicologia , Animais , Anisomicina/farmacologia , Peptídeos Penetradores de Células , Condicionamento Clássico/efeitos dos fármacos , Feminino , Lipopeptídeos/administração & dosagem , Microinjeções , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Ratos Long-Evans , Córtex Somatossensorial/anatomia & histologia , Córtex Somatossensorial/efeitos dos fármacos
11.
Learn Mem ; 23(5): 221-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27084929

RESUMO

Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty-the fact that preexposure to the taste conditioned stimulus (CS) reduces its associability. The effect of exposure to tastes other than the CS has, in contrast, received little investigation. Here, we exposed rats to sodium chloride (N) and citric acid (C), either before or within a conditioning session involving novel sucrose (S). Presentation of this taste array within the conditioning session weakened the resultant S aversion, as expected. The opposite effect, however, was observed when exposure to the taste array was provided in sessions that preceded conditioning: such experience enhanced the eventual S aversion-a result that was robust to differences in CS delivery method and number of tastes presented in conditioning sessions. This "non-CS preexposure effect" scaled with the number of tastes in the exposure array (experience with more stimuli was more effective than experience with fewer) and with the amount of exposure sessions (three preexposure sessions were more effective than two). Together, our results provide evidence that exposure and experience with the realm of tastes changes an animal's future handling of even novel tastes.


Assuntos
Aprendizagem da Esquiva/fisiologia , Condicionamento Clássico/fisiologia , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem , Percepção Gustatória/fisiologia , Paladar/fisiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento de Ingestão de Líquido/fisiologia , Feminino , Ratos , Ratos Long-Evans , Percepção Gustatória/efeitos dos fármacos , Fatores de Tempo , Privação de Água/fisiologia
12.
J Neurophysiol ; 115(3): 1314-23, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26792879

RESUMO

The parabrachial nuclei of the pons (PbN) receive almost direct input from taste buds on the tongue and control basic taste-driven behaviors. Thus it is reasonable to hypothesize that PbN neurons might respond to tastes in a manner similar to that of peripheral receptors, i.e., that these responses might be narrow and relatively "dynamics free." On the other hand, the majority of the input to PbN descends from forebrain regions such as gustatory cortex (GC), which processes tastes with "temporal codes" in which firing reflects first the presence, then the identity, and finally the desirability of the stimulus. Therefore a reasonable alternative hypothesis is that PbN responses might be dominated by dynamics similar to those observed in GC. Here we examined simultaneously recorded single-neuron PbN (and GC) responses in awake rats receiving exposure to basic taste stimuli. We found that pontine taste responses were almost entirely confined to canonically identified taste-PbN (t-PbN). Taste-specificity was found, furthermore, to be time varying in a larger percentage of these t-PbN responses than in responses recorded from the tissue around PbN (including non-taste-PbN). Finally, these time-varying properties were a good match for those observed in simultaneously recorded GC neurons-taste-specificity appeared after an initial nonspecific burst of action potentials, and palatability emerged several hundred milliseconds later. These results suggest that the pontine taste relay is closely allied with the dynamic taste processing performed in forebrain.


Assuntos
Núcleos Parabraquiais/fisiologia , Células Receptoras Sensoriais/fisiologia , Percepção Gustatória , Animais , Feminino , Núcleos Parabraquiais/citologia , Ratos , Ratos Long-Evans , Vigília
13.
J Neurosci ; 34(4): 1248-57, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24453316

RESUMO

Neural responses in many cortical regions encode information relevant to behavior: information that necessarily changes as that behavior changes with learning. Although such responses are reasonably theorized to be related to behavior causation, the true nature of that relationship cannot be clarified by simple learning studies, which show primarily that responses change with experience. Neural activity that truly tracks behavior (as opposed to simply changing with experience) will not only change with learning but also change back when that learning is extinguished. Here, we directly probed for this pattern, recording the activity of ensembles of gustatory cortical single neurons as rats that normally consumed sucrose avidly were trained first to reject it (i.e., conditioned taste aversion learning) and then to enjoy it again (i.e., extinction), all within 49 h. Both learning and extinction altered cortical responses, consistent with the suggestion (based on indirect evidence) that extinction is a novel form of learning. But despite the fact that, as expected, postextinction single-neuron responses did not resemble "naive responses," ensemble response dynamics changed with learning and reverted with extinction: both the speed of stimulus processing and the relationships among ensemble responses to the different stimuli tracked behavioral relevance. These data suggest that population coding is linked to behavior with a fidelity that single-neuron coding is not.


Assuntos
Comportamento Animal/fisiologia , Córtex Cerebral/fisiologia , Extinção Psicológica/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia , Animais , Eletrofisiologia , Feminino , Ratos
14.
J Neurosci ; 34(26): 8778-87, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24966378

RESUMO

It has been recently shown that local field potentials (LFPs) from the auditory and visual cortices carry information about sensory stimuli, but whether this is a universal property of sensory cortices remains to be determined. Moreover, little is known about the temporal dynamics of sensory information contained in LFPs following stimulus onset. Here we investigated the time course of the amount of stimulus information in LFPs and spikes from the gustatory cortex of awake rats subjected to tastants and water delivery on the tongue. We found that the phase and amplitude of multiple LFP frequencies carry information about stimuli, which have specific time courses after stimulus delivery. The information carried by LFP phase and amplitude was independent within frequency bands, since the joint information exhibited neither synergy nor redundancy. Tastant information in LFPs was also independent and had a different time course from the information carried by spikes. These findings support the hypothesis that the brain uses different frequency channels to dynamically code for multiple features of a stimulus.


Assuntos
Lobo Frontal/fisiologia , Percepção Gustatória/fisiologia , Paladar/fisiologia , Animais , Feminino , Vias Neurais/fisiologia , Neurônios/fisiologia , Ratos , Ratos Long-Evans
15.
J Neurosci ; 33(22): 9462-73, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23719813

RESUMO

The taste of foods, in particular the palatability of these tastes, exerts a powerful influence on our feeding choices. Although the lateral hypothalamus (LH) has long been known to regulate feeding behavior, taste processing in LH remains relatively understudied. Here, we examined single-unit LH responses in rats subjected to a battery of taste stimuli that differed in both chemical composition and palatability. Like neurons in cortex and amygdala, LH neurons produced a brief epoch of nonspecific responses followed by a protracted period of taste-specific firing. Unlike in cortex, however, where palatability-related information only appears 500 ms after the onset of taste-specific firing, taste specificity in LH was dominated by palatability-related firing, consistent with LH's role as a feeding center. Upon closer inspection, taste-specific LH neurons fell reliably into one of two subtypes: the first type showed a reliable affinity for palatable tastes, low spontaneous firing rates, phasic responses, and relatively narrow tuning; the second type showed strongest modulation to aversive tastes, high spontaneous firing rates, protracted responses, and broader tuning. Although neurons producing both types of responses were found within the same regions of LH, cross-correlation analyses suggest that they may participate in distinct functional networks. Our data shed light on the implementation of palatability processing both within LH and throughout the taste circuit, and may ultimately have implications for LH's role in the formation and maintenance of taste preferences and aversions.


Assuntos
Preferências Alimentares/fisiologia , Região Hipotalâmica Lateral/fisiologia , Paladar/fisiologia , Análise de Variância , Animais , Feminino , Alimentos , Vias Neurais/fisiologia , Oxigênio/sangue , Ratos , Ratos Long-Evans
16.
Chem Senses ; 39(3): 203-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24363269

RESUMO

Many animals hesitate when initially consuming a novel food and increase their consumption of that food between the first and second sessions of access-a process termed attenuation of neophobia (AN). AN has received attention as a model of learning and memory; it has been suggested that plasticity resulting from an association of the novel tastant with "safe outcome" results in a change in the neural response to the tastant during the second session, such that consumption increases. Most studies have reported that AN emerges only an hour or more after the end of the first exposure to the tastant, consistent with what is known of learning-related plasticity. But these studies have typically measured consumption, rather than real-time behavior, and thus the possibility exists that a more rapidly developing AN remains to be discovered. Here, we tested this possibility, examining both consumption and individual lick times in a novel variant of a brief-access task (BAT). When quantified in terms of consumption, data from the BAT accorded well with the results of a classic one-bottle task-both revealed neophobia/AN specific to higher concentrations (for instance, 28mM) of saccharin. An analysis of licking microstructure, however, additionally revealed a real-time correlate of neophobia-an explicit tendency, similarly specific for 28-mM saccharin, to cut short the initial bout of licks in a single trial (compared with water). This relative hesitancy (i.e., the shortness of the first lick bout to 28-mM saccharin compared with water) that constitutes neophobia not only disappeared between sessions but also gradually declined in magnitude across session 1. These data demonstrate that the BAT accurately measures AN, and that aspects of AN-and the processes underlying familiarization-begin within minutes of the very first taste.


Assuntos
Paladar/fisiologia , Animais , Comportamento Animal , Feminino , Aprendizagem , Memória , Ratos , Ratos Endogâmicos LEC , Sacarina/química , Fatores de Tempo
17.
Curr Biol ; 34(11): R542-R543, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38834028

RESUMO

A new study reveals that, as mice learn a taste discrimination task, taste responses in gustatory cortex undergo plasticity such that they reflect taste identity and predict the upcoming decision in separate response epochs.


Assuntos
Tomada de Decisões , Paladar , Animais , Camundongos , Tomada de Decisões/fisiologia , Paladar/fisiologia , Percepção Gustatória/fisiologia , Plasticidade Neuronal/fisiologia
18.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766243

RESUMO

The gustatory cortex (GC) plays a pivotal role in taste perception, with neural ensemble responses reflecting taste quality and influencing behavior. Recent work, however, has shown that GC taste responses change across sessions of novel taste exposure in taste-naïve rats. Here, we use single-trial analyses to explore changes in the cortical taste-code on the scale of individual trials. Contrary to the traditional view of taste perception as innate, our findings suggest rapid, experience-dependent changes in GC responses during initial taste exposure trials. Specifically, we find that early responses to novel taste are less "stereotyped" and encode taste identity less reliably compared to later responses. These changes underscore the dynamic nature of sensory processing and provides novel insights into the real-time dynamics of sensory processing across novel-taste familiarization.

19.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38617267

RESUMO

Food intake varies across the stages of a rat's estrous cycle. It is reasonable to hypothesize that this cyclic fluctuation in consumption reflects an impact of hormones on taste palatability/preference, but evidence for this hypothesis has been mixed, and critical within-subject experiments in which rats sample multiple tastes during each of the four main estrous phases (metestrus, diestrus, proestrus, and estrus) have been scarce. Here, we assayed licking for pleasant (sucrose, NaCl, saccharin) and aversive (quinine-HCl, citric acid) tastes each day for 5-10 days while tracking rats' estrous cycles through vaginal cytology. Initial analyses confirmed the previously-described increased consumption of pleasant stimuli 24-48 hours following the time of high estradiol. A closer look, however, revealed this effect to reflect a general magnification of palatability-higher than normal preferences for pleasant tastes and lower than normal preferences for aversive tastes-during metestrus. We hypothesized that this phenomenon might be related to estradiol processing in the lateral hypothalamus (LH), and tested this hypothesis by inhibiting LH estrogen receptor activity with ICI 182,780 during tasting. Control infusions replicated the metestrus magnification of palatability pattern; ICI infusions blocked this effect as predicted, but failed to render preferences "cycle free," instead delaying the palatability magnification until diestrus. Clearly, estrous phase mediates details of taste palatability in a manner involving hypothalamic actions of estradiol; further work will be needed to explain the lack of a flat response across the cycle with hypothalamic estradiol binding inhibited, a result which perhaps suggests dynamic interplay between brain regions or hormones. Significance Statement: Consummatory behaviors are impacted by many variables, including naturally circulating hormones. While it is clear that consumption is particularly high during the stages following the high-estradiol stage of the rodent's estrous (and human menstrual) cycle, it is as of yet unclear whether this phenomenon reflects cycle stage-specific palatability (i.e., whether pleasant tastes are particularly delicious, and aversive tastes particularly disgusting, at particular phases). Here we show that palatability is indeed modulated by estrous phase, and that this effect is governed, at least in part, by the action of estradiol within the lateral hypothalamus. These findings shed light on the mechanisms underlying the adverse impact on human welfare due to irregularities observed across the otherwise cyclic menstrual process.

20.
J Neurosci ; 32(48): 17037-47, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23197697

RESUMO

Food perception and preference formation relies on the ability to combine information from both the taste and olfactory systems. Accordingly, psychophysical investigations in humans and behavioral work in animals has shown that the taste system plays an integral role in odor processing. However, the neural basis for the influence of taste (gustation) on odor (olfaction) remains essentially unknown. Here we tested the hypothesis that gustatory influence on olfactory processing occurs at the level of primary olfactory cortex. We recorded activity from single neurons in posterior olfactory (piriform) cortex (pPC) of awake rats while presenting basic taste solutions directly to the tongue. A significant portion of pPC neurons proved to respond selectively to taste stimuli. These taste responses were significantly reduced by blockade of the gustatory epithelium, were unaffected by blockade of the olfactory epithelium, and were independent of respiration behavior. In contrast, responses to olfactory stimuli, recorded from the same area, were reduced by nasal epithelial deciliation and phase-locked to the respiration cycle. These results identify pPC as a likely site for gustatory influences on olfactory processing, which play an important role in food perception and preference formation.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia , Percepção Gustatória/fisiologia , Animais , Feminino , Odorantes , Ratos , Ratos Long-Evans , Olfato/fisiologia , Paladar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA