Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 36(34): 10022-10032, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32787023

RESUMO

The design of remotely programmable microfluidic systems with controlled fluid flow and particle transport is a significant challenge. Herein, we describe a system that harnesses the intrinsic thermal response of a fluid to spontaneously pump solutions and regulate the transport of immersed microparticles. Irradiating a silver-coated channel with ultraviolet (UV) light generates local convective vortexes, which, in addition to the externally imposed flow, can be used to guide particles along specific trajectories or to arrest their motion. The method provides the distinct advantage that the flow and the associated convective patterns can be dynamically altered by relocating the source of UV light. Moreover, the flow can be initiated and terminated "on-demand" by turning the light on or off.

2.
Research (Wash D C) ; 2022: 9816562, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928302

RESUMO

"Life-like" nonequilibrium assemblies are of increasing significance, but suffering from limited steerability as they are generally based on micro/nanomotors with inherent asymmetry in chemical composition or geometry, of which the vigorous random Brownian rotations disturb the local interactions. Here, we demonstrate that isotropic photocatalytic micromotors, due to the persistent phoretic flow from the illuminated to shadowed side irrespective of their Brownian rotations, experience light-programmable local interactions (reversibly from attraction to repulsion and/or alignment) depending on the direction of the incident lights. Thus, they can be organized into a variety of tunable nonequilibrium assemblies, such as apolar solids (i.e., immobile colloidal crystal), polar liquids (i.e., phototactic colloidal stream), and polar solids (i.e., phototactic colloidal crystal), which can further be "cut" into a predesigned pattern by utilizing the switching motor-motor interactions at superimposed-light edges. This work facilitates the development of active matters and motile functional microdevices.

3.
Nanoscale Adv ; 3(21): 6157-6163, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36133936

RESUMO

Cargo delivery by micro/nanomotors provides enormous opportunities for micromanipulation, environmental cleaning, drug delivery, etc. However, due to the limited driving force, it is usually difficult for single micro/nanomotors to transport cargoes much larger or heavier than themselves. Here, we demonstrate that flocking phototactic TiO2 micromotors can cooperatively transport multiple and different types of large cargoes based on light-responsive diffusiophoresis. Utilizing spontaneous diffusiophoretic attraction, flocking TiO2 micromotors can load large cargoes. Under UV light navigation, flocking TiO2 micromotors cooperatively carry and transport cargoes via collective diffusiophoretic repulsion in open space or complex microenvironments. After reaching the destination, the carried cargoes can also be unloaded from the flock and be deployed at a predetermined destination by disassembling or reversing the flock. This study may pave the way for developing intelligent swarming micro/nanorobots for cooperative targeting micromanipulation and advancing their applications in drug delivery and microengineering.

4.
Nanoscale ; 11(22): 10944-10951, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31139774

RESUMO

To navigate in complex fluid environments, swimming organisms like fish or bacteria often reorient their bodies antiparallel or against the flow, more commonly known as rheotaxis. This reorientation motion enables the organisms to migrate against the fluid flow, as observed in salmon swimming upstream to spawn. Rheotaxis can also be realized in artificial microswimmers - self-propelled particles that mimic swimming microorganisms. Here we study experimentally and by computer simulations the rheotaxis of self-propelled gold-platinum nanorods in microfluidic channels. We observed two distinct modes of artificial rheotaxis: a high shear domain near the bottom wall of the microfluidic channel and a low shear regime in the corners. Reduced fluid drag in the corners promotes the formation of many particle aggregates that rheotax collectively. Our study provides insight into the biomimetic functionality of artificial self-propelled nanorods for dynamic self-assembly and the delivery of payloads to targeted locations.


Assuntos
Simulação por Computador , Ouro , Hidrodinâmica , Modelos Teóricos , Movimento (Física) , Nanotubos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA