Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Infect Dis ; 224(8): 1372-1382, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33675226

RESUMO

BACKGROUND: There are limited data regarding immunological correlates of protection for the modified vaccinia Ankara (MVA) smallpox vaccine. METHODS: A total of 523 vaccinia-naive subjects were randomized to receive 2 vaccine doses, as lyophilized MVA given subcutaneously, liquid MVA given subcutaneously (liquid-SC group), or liquid MVA given intradermally (liquid-ID group) 28 days apart. For a subset of subjects, antibody-dependent cellular cytotoxicity (ADCC), interferon-γ release enzyme-linked immunospot (ELISPOT), and protein microarray antibody-binding assays were conducted. Protein microarray responses were assessed for correlations with plaque reduction neutralization titer (PRNT), enzyme-linked immunosorbent assay, ADCC, and ELISPOT results. RESULTS: MVA elicited significant microarray antibody responses to 15 of 224 antigens, mostly virion membrane proteins, at day 28 or 42, particularly WR113/D8L and WR101H3L. In the liquid-SC group, responses to 9 antigens, including WR113/D8L and WR101/H3L, correlated with PRNT results. Three were correlated in the liquid-ID group. No significant correlations were observed with ELISPOT responses. In the liquid-ID group, WR052/F13L, a membrane glycoprotein, correlated with ADCC responses. CONCLUSIONS: MVA elicited antibodies to 15 vaccinia strain antigens representing virion membrane. Antibody responses to 2 proteins strongly increased and significantly correlated with increases in PRNT. Responses to these proteins are potential correlates of protection and may serve as immunogens for future vaccine development. CLINICAL TRIALS REGISTRATION: NCT00914732.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Vacina Antivariólica/administração & dosagem , Vacinas de DNA/administração & dosagem , Vacínia , Vacinas Virais/administração & dosagem , Formação de Anticorpos , Antígenos Virais , Humanos , Imunidade Celular , Imunização , Análise Serial de Proteínas , Vacinas Atenuadas , Vaccinia virus/imunologia
2.
Nucleic Acids Res ; 47(D1): D759-D765, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30364959

RESUMO

FlyBase (flybase.org) is a knowledge base that supports the community of researchers that use the fruit fly, Drosophila melanogaster, as a model organism. The FlyBase team curates and organizes a diverse array of genetic, molecular, genomic, and developmental information about Drosophila. At the beginning of 2018, 'FlyBase 2.0' was released with a significantly improved user interface and new tools. Among these important changes are a new organization of search results into interactive lists or tables (hitlists), enhanced reference lists, and new protein domain graphics. An important new data class called 'experimental tools' consolidates information on useful fly strains and other resources related to a specific gene, which significantly enhances the ability of the Drosophila researcher to design and carry out experiments. With the release of FlyBase 2.0, there has also been a restructuring of backend architecture and a continued development of application programming interfaces (APIs) for programmatic access to FlyBase data. In this review, we describe these major new features and functionalities of the FlyBase 2.0 site and how they support the use of Drosophila as a model organism for biological discovery and translational research.


Assuntos
Bases de Dados Genéticas , Drosophila melanogaster/genética , Genoma de Inseto/genética , Genômica , Animais , Domínios Proteicos/genética , Software
3.
Nature ; 512(7515): 445-8, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25164755

RESUMO

The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters.


Assuntos
Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Cromatina/genética , Análise por Conglomerados , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/metabolismo , Humanos , Larva/genética , Larva/crescimento & desenvolvimento , Modelos Genéticos , Anotação de Sequência Molecular , Regiões Promotoras Genéticas/genética , Pupa/genética , Pupa/crescimento & desenvolvimento , RNA não Traduzido/genética , Análise de Sequência de RNA
4.
Nature ; 512(7515): 393-9, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24670639

RESUMO

Animal transcriptomes are dynamic, with each cell type, tissue and organ system expressing an ensemble of transcript isoforms that give rise to substantial diversity. Here we have identified new genes, transcripts and proteins using poly(A)+ RNA sequencing from Drosophila melanogaster in cultured cell lines, dissected organ systems and under environmental perturbations. We found that a small set of mostly neural-specific genes has the potential to encode thousands of transcripts each through extensive alternative promoter usage and RNA splicing. The magnitudes of splicing changes are larger between tissues than between developmental stages, and most sex-specific splicing is gonad-specific. Gonads express hundreds of previously unknown coding and long non-coding RNAs (lncRNAs), some of which are antisense to protein-coding genes and produce short regulatory RNAs. Furthermore, previously identified pervasive intergenic transcription occurs primarily within newly identified introns. The fly transcriptome is substantially more complex than previously recognized, with this complexity arising from combinatorial usage of promoters, splice sites and polyadenylation sites.


Assuntos
Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Processamento Alternativo/genética , Animais , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Feminino , Masculino , Anotação de Sequência Molecular , Tecido Nervoso/metabolismo , Especificidade de Órgãos , Poli A/genética , Poliadenilação , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Caracteres Sexuais , Estresse Fisiológico/genética
5.
PLoS Pathog ; 13(2): e1006232, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28235043

RESUMO

Among human RNA viruses, hepatitis C virus (HCV) is unusual in that it causes persistent infection in the majority of infected people. To establish persistence, HCV evades host innate and adaptive immune responses by multiple mechanisms. Recent studies identified virus genome-derived small RNAs (vsRNAs) in HCV-infected cells; however, their biological significance during human HCV infection is unknown. One such vsRNA arising from the hepatitis C virus (HCV) E2 coding region impairs T cell receptor (TCR) signaling by reducing expression of a Src-kinase regulatory phosphatase (PTPRE) in vitro. Since TCR signaling is a critical first step in T cell activation, differentiation, and effector function, its inhibition may contribute towards HCV persistence in vivo. The effect of HCV infection on PTPRE expression in vivo has not been examined. Here, we found that PTPRE levels were significantly reduced in liver tissue and peripheral blood mononuclear cells (PBMCs) obtained from HCV-infected humans compared to uninfected controls. Loss of PTPRE expression impaired antigen-specific TCR signaling, and curative HCV therapy restored PTPRE expression in PBMCs; restoring antigen-specific TCR signaling defects. The extent of PTPRE expression correlated with the amount of sequence complementarity between the HCV E2 vsRNA and the PTPRE 3' UTR target sites. Transfection of a hepatocyte cell line with full-length HCV RNA or with synthetic HCV vsRNA duplexes inhibited PTPRE expression, recapitulating the in vivo observation. Together, these data demonstrate that HCV infection reduces PTPRE expression in the liver and PBMCs of infected humans, and suggest that the HCV E2 vsRNA is a novel viral factor that may contribute towards viral persistence.


Assuntos
Hepatite C/imunologia , Evasão da Resposta Imune/imunologia , Ativação Linfocitária/imunologia , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/imunologia , Linfócitos T/imunologia , Ensaio de Imunoadsorção Enzimática , Hepacivirus/imunologia , Humanos , Immunoblotting , RNA Viral/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transfecção
6.
PLoS Genet ; 12(9): e1006295, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27599372

RESUMO

Deletions, commonly referred to as deficiencies by Drosophila geneticists, are valuable tools for mapping genes and for genetic pathway discovery via dose-dependent suppressor and enhancer screens. More recently, it has become clear that deviations from normal gene dosage are associated with multiple disorders in a range of species including humans. While we are beginning to understand some of the transcriptional effects brought about by gene dosage changes and the chromosome rearrangement breakpoints associated with them, much of this work relies on isolated examples. We have systematically examined deficiencies of the left arm of chromosome 2 and characterize gene-by-gene dosage responses that vary from collapsed expression through modest partial dosage compensation to full or even over compensation. We found negligible long-range effects of creating novel chromosome domains at deletion breakpoints, suggesting that cases of gene regulation due to altered nuclear architecture are rare. These rare cases include trans de-repression when deficiencies delete chromatin characterized as repressive in other studies. Generally, effects of breakpoints on expression are promoter proximal (~100bp) or in the gene body. Effects of deficiencies genome-wide are in genes with regulatory relationships to genes within the deleted segments, highlighting the subtle expression network defects in these sensitized genetic backgrounds.


Assuntos
Cromatina/genética , Drosophila melanogaster/genética , Dosagem de Genes , Redes Reguladoras de Genes , Animais , Pontos de Quebra do Cromossomo , Cromossomos de Insetos/genética , Deleção de Genes
7.
Int J Mass Spectrom ; 425: 36-46, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30906200

RESUMO

A combination of liquid chromatography, ion mobility spectrometry, mass spectrometry, and database searching techniques were used to characterize the proteomes of four biological replicates of adult Drosophila melanogaster heads at seven time points across their lifespans. Based on the detection of tryptic peptides, the identities of 1281 proteins were determined. An estimate of the abundance of each protein, based on the three most intense peptide ions, shows that the quantified species vary in concentration over a factor of ~103. Compared to initial studies in the field of Drosophila proteomics, our current results show an eight-fold higher temporal protein coverage with increased quantitative accuracy. Across the lifespan, we observe a range of trends in the abundance of different proteins, including: an increase in abundance of proteins involved in oxidative phosphorylation, and the tricarboxylic acid cycle; a decrease in proteasomal proteins, as well as ribosomal proteins; and, many types of proteins, which remain relatively unchanged. For younger flies, proteomes are relatively similar within their age group. For older flies, proteome similarity decreases within their age group. These combined results illustrate a correlation between increasing age and decreasing proteostasis.

8.
J Infect Dis ; 216(9): 1164-1175, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28968905

RESUMO

The Flavivirus genus within the Flaviviridae family is comprised of many important human pathogens including yellow fever virus (YFV), dengue virus (DENV), and Zika virus (ZKV), all of which are global public health concerns. Although the related flaviviruses hepatitis C virus and human pegivirus (formerly named GBV-C) interfere with T-cell receptor (TCR) signaling by novel RNA and protein-based mechanisms, the effect of other flaviviruses on TCR signaling is unknown. Here, we studied the effect of YFV, DENV, and ZKV on TCR signaling. Both YFV and ZKV replicated in human T cells in vitro; however, only YFV inhibited TCR signaling. This effect was mediated at least in part by the YFV envelope (env) protein coding RNA. Deletion mutagenesis studies demonstrated that expression of a short, YFV env RNA motif (vsRNA) was required and sufficient to inhibit TCR signaling. Expression of this vsRNA and YFV infection of T cells reduced the expression of a Src-kinase regulatory phosphatase (PTPRE), while ZKV infection did not. YFV infection in mice resulted in impaired TCR signaling and PTPRE expression, with associated reduction in murine response to experimental ovalbumin vaccination. Together, these data suggest that viruses within the flavivirus genus inhibit TCR signaling in a species-dependent manner.


Assuntos
Vírus da Dengue/genética , RNA/genética , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/genética , Replicação Viral/genética , Vírus da Febre Amarela/genética , Zika virus/genética , Vírus da Dengue/patogenicidade , Humanos , Vírus da Febre Amarela/patogenicidade , Zika virus/patogenicidade
9.
Genome Res ; 24(7): 1236-50, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24985917

RESUMO

We expanded the knowledge base for Drosophila cell line transcriptomes by deeply sequencing their small RNAs. In total, we analyzed more than 1 billion raw reads from 53 libraries across 25 cell lines. We verify reproducibility of biological replicate data sets, determine common and distinct aspects of miRNA expression across cell lines, and infer the global impact of miRNAs on cell line transcriptomes. We next characterize their commonalities and differences in endo-siRNA populations. Interestingly, most cell lines exhibit enhanced TE-siRNA production relative to tissues, suggesting this as a common aspect of cell immortalization. We also broadly extend annotations of cis-NAT-siRNA loci, identifying ones with common expression across diverse cells and tissues, as well as cell-restricted loci. Finally, we characterize small RNAs in a set of ovary-derived cell lines, including somatic cells (OSS and OSC) and a mixed germline/somatic cell population (fGS/OSS) that exhibits ping-pong piRNA signatures. Collectively, the ovary data reveal new genic piRNA loci, including unusual configurations of piRNA-generating regions. Together with the companion analysis of mRNAs described in a previous study, these small RNA data provide comprehensive information on the transcriptional landscape of diverse Drosophila cell lines. These data should encourage broader usage of fly cell lines, beyond the few that are presently in common usage.


Assuntos
Drosophila/genética , Variação Genética , MicroRNAs/genética , RNA Interferente Pequeno/genética , Animais , Sequência de Bases , Linhagem Celular , Biologia Computacional/métodos , Expressão Gênica , Loci Gênicos , Células Germinativas , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/química , Anotação de Sequência Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Interferente Pequeno/química , Alinhamento de Sequência
10.
PLoS Pathog ; 11(9): e1005183, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26421924

RESUMO

T cell receptor (TCR) signaling is required for T-cell activation, proliferation, differentiation, and effector function. Hepatitis C virus (HCV) infection is associated with impaired T-cell function leading to persistent viremia, delayed and inconsistent antibody responses, and mild immune dysfunction. Although multiple factors appear to contribute to T-cell dysfunction, a role for HCV particles in this process has not been identified. Here, we show that incubation of primary human CD4+ and CD8+ T-cells with HCV RNA-containing serum, HCV-RNA containing extracellular vesicles (EVs), cell culture derived HCV particles (HCVcc) and HCV envelope pseudotyped retrovirus particles (HCVpp) inhibited TCR-mediated signaling. Since HCVpp's contain only E1 and E2, we examined the effect of HCV E2 on TCR signaling pathways. HCV E2 expression recapitulated HCV particle-induced TCR inhibition. A highly conserved, 51 nucleotide (nt) RNA sequence was sufficient to inhibit TCR signaling. Cells expressing the HCV E2 coding RNA contained a short, virus-derived RNA predicted to be a Dicer substrate, which targeted a phosphatase involved in Src-kinase signaling (PTPRE). T-cells and hepatocytes containing HCV E2 RNA had reduced PTPRE protein levels. Mutation of 6 nts abolished the predicted Dicer interactions and restored PTPRE expression and proximal TCR signaling. HCV RNA did not inhibit distal TCR signaling induced by PMA and Ionomycin; however, HCV E2 protein inhibited distal TCR signaling. This inhibition required lymphocyte-specific tyrosine kinase (Lck). Lck phosphorylated HCV E2 at a conserved tyrosine (Y613), and phospho-E2 inhibited nuclear translocation of NFAT. Mutation of Y613 restored distal TCR signaling, even in the context of HCVpps. Thus, HCV particles delivered viral RNA and E2 protein to T-cells, and these inhibited proximal and distal TCR signaling respectively. These effects of HCV particles likely aid in establishing infection and contribute to viral persistence.


Assuntos
Hepatite C/imunologia , Ativação Linfocitária/imunologia , RNA Viral/imunologia , Linfócitos T/imunologia , Proteínas do Envelope Viral/imunologia , Sequência de Bases , Sequência Conservada , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Hepacivirus , Humanos , Immunoblotting , Imunoprecipitação , Reação em Cadeia da Polimerase , Receptores de Antígenos de Linfócitos T/imunologia , Vírion/imunologia
11.
Nature ; 471(7339): 473-9, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21179090

RESUMO

Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Transcrição Gênica/genética , Processamento Alternativo/genética , Animais , Sequência de Bases , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Éxons/genética , Feminino , Genes de Insetos/genética , Genoma de Inseto/genética , Masculino , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas/genética , Edição de RNA/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Pequeno RNA não Traduzido/análise , Pequeno RNA não Traduzido/genética , Análise de Sequência , Caracteres Sexuais
12.
Genome Res ; 21(2): 182-92, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21177961

RESUMO

Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals.


Assuntos
Biologia Computacional , Drosophila melanogaster/genética , Genoma de Inseto/genética , Regiões Promotoras Genéticas , Regiões 3' não Traduzidas/genética , Animais , Mapeamento Cromossômico , Drosophila melanogaster/embriologia , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Sítio de Iniciação de Transcrição
13.
Genome Res ; 21(2): 301-14, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21177962

RESUMO

Drosophila melanogaster cell lines are important resources for cell biologists. Here, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signaling pathways are well represented: most differentiation pathways are "off" and survival/growth pathways "on." Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common "cell line" gene expression pattern.


Assuntos
Drosophila melanogaster/genética , Variação Genética , Transcrição Gênica , Animais , Linhagem Celular , Análise por Conglomerados , Éxons , Feminino , Perfilação da Expressão Gênica , Masculino , Dados de Sequência Molecular , Transdução de Sinais/genética , Fatores de Transcrição/genética
14.
J Immunol ; 189(5): 2211-6, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22844114

RESUMO

GB virus type C (GBV-C) viremia is associated with reduced CD4+ T cell expansion following IL-2 therapy and with a reduction in T cell activation in HIV-infected individuals. The mechanism(s) by which GBV-C might alter T cell activation or IL-2 signaling have not been studied. In this study, we assess IL-2 release, IL-2R expression, IL-2 signaling, and cell proliferation in tet-off Jurkat cells expressing the GBV-C envelope glycoprotein (E2) following activation through the TCR. TCR activation was induced by incubation in anti-CD3/CD28 Abs. IL-2 release was measured by ELISA, STAT5 phosphorylation was assessed by immunoblot, and IL-2Rα (CD25) expression and cell proliferation were determined by flow cytometry. IL-2 and IL-2Rα steady-state mRNA levels were measured by real-time PCR. GBV-C E2 expression significantly inhibited IL-2 release, CD25 expression, STAT5 phosphorylation, and cellular proliferation in Jurkat cells following activation through the TCR compared with control cell lines. Reducing E2 expression by doxycycline reversed the inhibitory effects observed in the E2-expressing cells. The N-terminal 219 aa of E2 was sufficient to inhibit IL-2 signaling. Addition of purified recombinant GBV-C E2 protein to primary human CD4+ and CD8+ T cells inhibited TCR activation-induced IL-2 release and upregulation of IL-2Rα expression. These data provide evidence that the GBV-C E2 protein may contribute to the block in CD4+ T cell expansion following IL-2 therapy in HIV-infected individuals. Furthermore, the effects of GBV-C on IL-2 and IL-2-signaling pathways may contribute to the reduction in chronic immune activation observed in GBV-C/HIV-coinfected individuals.


Assuntos
Vírus GB C/imunologia , Interleucina-2/antagonistas & inibidores , Interleucina-2/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais/imunologia , Proteínas do Envelope Viral/fisiologia , Internalização do Vírus , Vírus GB C/genética , Humanos , Interleucina-2/biossíntese , Células Jurkat
15.
Trans Am Clin Climatol Assoc ; 125: 14-24; discussion 24-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25125715

RESUMO

Hepatitis C virus (HCV) and GB virus type C (GBV-C) are associated with impaired T cell function despite the fact that HCV replicates in hepatocytes and GBV-C in a small proportion of lymphocytes. Recently, we showed that HCV and GBV-C E2-envelope proteins reduce T cell activation via the T cell receptor (TCR) by competing for phosphorylation with a critical kinase in the TCR signaling cascade (Lck). E2 interfered with TCR signaling in E2 expressing cells and in bystander cells. The bystander effect was mediated by virus particles and extracellular microvesicular particles (exosomes). Multiple kinase substrate sites are predicted to reside on viral structural proteins and based on bioinformatic predictions, many RNA virus pathogens may interfere with TCR signaling via a similar mechanism. Identification of T cell inhibitory effects of virus structural proteins may provide novel approaches to enhance the immunogenicity and memory of viral vaccines.


Assuntos
Vírus GB C/imunologia , Hepacivirus/imunologia , Hepatite/imunologia , Evasão da Resposta Imune , Ativação Linfocitária , Linfócitos T/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Vírus GB C/metabolismo , Vírus GB C/patogenicidade , Hepacivirus/metabolismo , Hepacivirus/patogenicidade , Hepatite/epidemiologia , Hepatite/história , Hepatite/metabolismo , Hepatite/virologia , História do Século XX , História do Século XXI , Interações Hospedeiro-Patógeno , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Linfócitos T/virologia , Proteínas do Envelope Viral/metabolismo
16.
J Gen Virol ; 94(Pt 4): 774-782, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23288422

RESUMO

GB virus type C (GBV-C) is a lymphotropic virus that can cause persistent infection in humans. GBV-C is not associated with any disease, but is associated with reduced mortality in human immunodeficiency virus type 1 (HIV-1)-infected individuals. Related viruses have been isolated from chimpanzees (GBV-Ccpz) and from New World primates (GB virus type A, GBV-A). These viruses are also capable of establishing persistent infection. We determined the nucleotide sequence encoding the envelope glycoprotein (E2) of two GBV-Ccpz isolates obtained from the sera of captive chimpanzees. The deduced GBV-Ccpz E2 protein differed from human GBV-C by 31 % at the amino acid level. Similar to human GBV-C E2, expression of GBV-Ccpz E2 in a tet-off human CD4(+) Jurkat T-cell line significantly inhibited the replication of diverse HIV-1 isolates. This anti-HIV-replication effect of GBV-Ccpz E2 protein was reversed by maintaining cells in doxycycline to reduce E2 expression. Previously, we found a 17 aa region within human GBV-C E2 that was sufficient to inhibit HIV-1. Although GBV-Ccpz E2 differed by 3 aa differences in this region, the chimpanzee GBV-C 17mer E2 peptide inhibited HIV-1 replication. Similarly, the GBV-A peptide that aligns with this GBV-C E2 region inhibited HIV-1 replication despite sharing only 5 aa with the human GBV-C E2 sequence. Thus, despite amino acid differences, the peptide region on both the GBV-Ccpz and the GBV-A E2 protein inhibit HIV-1 replication similar to human GBV-C. Consequently, GBV-Ccpz or GBV-A infection of non-human primates may provide an animal model to study GB virus-HIV interactions.


Assuntos
Linfócitos T CD4-Positivos/virologia , Vírus GB A/fisiologia , Vírus GB C/fisiologia , HIV-1/fisiologia , Proteínas do Envelope Viral/metabolismo , Interferência Viral , Replicação Viral , Animais , Vírus GB A/isolamento & purificação , Vírus GB C/isolamento & purificação , Humanos , Células Jurkat , Dados de Sequência Molecular , Pan troglodytes , Análise de Sequência de DNA , Proteínas do Envelope Viral/genética
17.
Nature ; 450(7167): 219-32, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17994088

RESUMO

Sequencing of multiple related species followed by comparative genomics analysis constitutes a powerful approach for the systematic understanding of any genome. Here, we use the genomes of 12 Drosophila species for the de novo discovery of functional elements in the fly. Each type of functional element shows characteristic patterns of change, or 'evolutionary signatures', dictated by its precise selective constraints. Such signatures enable recognition of new protein-coding genes and exons, spurious and incorrect gene annotations, and numerous unusual gene structures, including abundant stop-codon readthrough. Similarly, we predict non-protein-coding RNA genes and structures, and new microRNA (miRNA) genes. We provide evidence of miRNA processing and functionality from both hairpin arms and both DNA strands. We identify several classes of pre- and post-transcriptional regulatory motifs, and predict individual motif instances with high confidence. We also study how discovery power scales with the divergence and number of species compared, and we provide general guidelines for comparative studies.


Assuntos
Drosophila/classificação , Drosophila/genética , Evolução Molecular , Genoma de Inseto/genética , Genômica , Animais , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Proteínas de Drosophila/genética , Éxons/genética , Regulação da Expressão Gênica/genética , Genes de Insetos/genética , MicroRNAs/genética , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , Regiões não Traduzidas/genética
18.
Nature ; 450(7167): 203-18, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17994087

RESUMO

Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.


Assuntos
Drosophila/classificação , Drosophila/genética , Evolução Molecular , Genes de Insetos/genética , Genoma de Inseto/genética , Genômica , Filogenia , Animais , Códon/genética , Elementos de DNA Transponíveis/genética , Drosophila/imunologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Ordem dos Genes/genética , Genoma Mitocondrial/genética , Imunidade/genética , Família Multigênica/genética , RNA não Traduzido/genética , Reprodução/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Sintenia/genética
19.
Nat Genet ; 36(3): 288-92, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14981519

RESUMO

In fruit fly research, chromosomal deletions are indispensable tools for mapping mutations, characterizing alleles and identifying interacting loci. Most widely used deletions were generated by irradiation or chemical mutagenesis. These methods are labor-intensive, generate random breakpoints and result in unwanted secondary mutations that can confound phenotypic analyses. Most of the existing deletions are large, have molecularly undefined endpoints and are maintained in genetically complex stocks. Furthermore, the existence of haplolethal or haplosterile loci makes the recovery of deletions of certain regions exceedingly difficult by traditional methods, resulting in gaps in coverage. Here we describe two methods that address these problems by providing for the systematic isolation of targeted deletions in the D. melanogaster genome. The first strategy used a P element-based technique to generate deletions that closely flank haploinsufficient genes and minimize undeleted regions. This deletion set has increased overall genomic coverage by 5-7%. The second strategy used FLP recombinase and the large array of FRT-bearing insertions described in the accompanying paper to generate 519 isogenic deletions with molecularly defined endpoints. This second deletion collection provides 56% genome coverage so far. The latter methodology enables the generation of small custom deletions with predictable endpoints throughout the genome and should make their isolation a simple and routine task.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Deleção de Sequência , Animais , Genoma , Mutagênese Insercional
20.
J Vis Exp ; (193)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37036230

RESUMO

Human industries generate hundreds of thousands of chemicals, many of which have not been adequately studied for environmental safety or effects on human health. This deficit of chemical safety information is exacerbated by current testing methods in mammals that are expensive, labor-intensive, and time-consuming. Recently, scientists and regulators have been working to develop new approach methodologies (NAMs) for chemical safety testing that are cheaper, more rapid, and reduce animal suffering. One of the key NAMs to emerge is the use of invertebrate organisms as replacements for mammalian models to elucidate conserved chemical modes of action across distantly related species, including humans. To advance these efforts, here, we describe a method that uses the fruit fly, Drosophila melanogaster, to assess chemical safety. The protocol describes a simple, rapid, and inexpensive procedure to measure the viability and feeding behavior of exposed adult flies. In addition, the protocol can be easily adapted to generate samples for genomic and metabolomic approaches. Overall, the protocol represents an important step forward in establishing Drosophila as a standard model for use in precision toxicology.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Adulto , Humanos , Genômica , Comportamento Alimentar , Medição de Risco , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA