Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 49(1): 120-133.e9, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30005826

RESUMO

B lymphocytes can suppress immunity through interleukin (IL)-10 production in infectious, autoimmune, and malignant diseases. Here, we have identified a natural plasma cell subset that distinctively expresses the inhibitory receptor LAG-3 and mediates this function in vivo. These plasma cells also express the inhibitory receptors CD200, PD-L1, and PD-L2. They develop from various B cell subsets in a B cell receptor (BCR)-dependent manner independently of microbiota in naive mice. After challenge they upregulate IL-10 expression via a Toll-like receptor-driven mechanism within hours and without proliferating. This function is associated with a unique transcriptome and epigenome, including the lowest amount of DNA methylation at the Il10 locus compared to other B cell subsets. Their augmented accumulation in naive mutant mice with increased BCR signaling correlates with the inhibition of memory T cell formation and vaccine efficacy after challenge. These natural regulatory plasma cells may be of broad relevance for disease intervention.


Assuntos
Antígenos CD/genética , Expressão Gênica , Interleucina-10/biossíntese , Plasmócitos/imunologia , Animais , Antígenos CD/imunologia , Subpopulações de Linfócitos B/imunologia , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Interleucina-10/genética , Ativação Linfocitária , Masculino , Camundongos , Plasmócitos/fisiologia , Receptores de Antígenos de Linfócitos B/metabolismo , Salmonelose Animal/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Receptores Toll-Like/metabolismo , Regulação para Cima/genética , Vacinas/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
2.
J Virol ; 98(5): e0151623, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38567951

RESUMO

The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.


Assuntos
Macaca fascicularis , Modelos Animais , Vacina contra Febre Amarela , Animais , Feminino , Humanos , Masculino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Imunidade Inata , Biologia de Sistemas/métodos , Vacinação , Febre Amarela/prevenção & controle , Febre Amarela/imunologia , Febre Amarela/virologia , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia
3.
Immunity ; 44(3): 476-491, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26982355

RESUMO

Phagocytes are crucial for host defense against bacterial pathogens. As first demonstrated by Metchnikoff, neutrophils and mononuclear phagocytes share the capacity to engulf, kill, and digest microbial invaders. Generally, neutrophils focus on extracellular, and mononuclear phagocytes on intracellular, pathogens. Reciprocally, extracellular pathogens often capitalize on hindering phagocytosis and killing of phagocytes, whereas intracellular bacteria frequently allow their engulfment and then block intracellular killing. As foreseen by Metchnikoff, phagocytes become highly versatile by acquiring diverse phenotypes, but still retaining some plasticity. Further, phagocytes engage in active crosstalk with parenchymal and immune cells to promote adjunctive reactions, including inflammation, tissue healing, and remodeling. This dynamic network allows the host to cope with different types of microbial invaders. Here we present an update of molecular and cellular mechanisms underlying phagocyte functions in antibacterial defense. We focus on four exemplary bacteria ranging from an opportunistic extracellular to a persistent intracellular pathogen.


Assuntos
Bactérias/imunologia , Infecções Bacterianas/imunologia , Fagócitos/imunologia , Animais , Diferenciação Celular , Espaço Extracelular , Interações Hospedeiro-Patógeno , Humanos , Imunidade Celular , Inflamação , Espaço Intracelular , Fagocitose , Regeneração/imunologia , Cicatrização/imunologia
4.
Med Microbiol Immunol ; 213(1): 17, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093331

RESUMO

Carl Flügge is best known for the promotion of studies demonstrating the transmission of all manner of infections, but particularly tuberculosis, by coughed droplets. But it is seldom recognised that Flügge was also influential in a number of other fields comprising the practice of hygiene. One-hundred years following his death in 1923, we review literature related to the studies of Flügge and his colleagues and students and illustrate the particular emphasis he laid upon the environment within which disease and its transmission might be fostered or prevented, embracing and studying aspects essential to the health of any community ranging from fundamental microbiology in the laboratory to subjects as disparate as housing, clean water supply, nutrition, sanitation, socio-economic circumstances and climate. Very early in his career he promoted breast feeding for the prevention of seasonal gastro-enteritis and later the sheltering of cough as a means of preventing the transmission of infected respiratory droplets, not only as regards tuberculosis, but also concerning all manner of other respiratory infections. By the time of Flügge's death the complexification of available scientific methodologies comprising hygiene made it difficult for any individual to comprehend and study the wide range of hygiene-related subjects such as Flügge did. Carl Flügge was one of the last holistic hygienists and an originator of the study of environmental health as a pillar of hygiene.


Assuntos
Higiene , Humanos , História do Século XX , Higiene/história , Doenças Transmissíveis/transmissão , Doenças Transmissíveis/história
5.
Nature ; 563(7729): 131-136, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30356214

RESUMO

Accurate repair of DNA double-stranded breaks by homologous recombination preserves genome integrity and inhibits tumorigenesis. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that activates innate immunity by initiating the STING-IRF3-type I IFN signalling cascade1,2. Recognition of ruptured micronuclei by cGAS links genome instability to the innate immune response3,4, but the potential involvement of cGAS in DNA repair remains unknown. Here we demonstrate that cGAS inhibits homologous recombination in mouse and human models. DNA damage induces nuclear translocation of cGAS in a manner that is dependent on importin-α, and the phosphorylation of cGAS at tyrosine 215-mediated by B-lymphoid tyrosine kinase-facilitates the cytosolic retention of cGAS. In the nucleus, cGAS is recruited to double-stranded breaks and interacts with PARP1 via poly(ADP-ribose). The cGAS-PARP1 interaction impedes the formation of the PARP1-Timeless complex, and thereby suppresses homologous recombination. We show that knockdown of cGAS suppresses DNA damage and inhibits tumour growth both in vitro and in vivo. We conclude that nuclear cGAS suppresses homologous-recombination-mediated repair and promotes tumour growth, and that cGAS therefore represents a potential target for cancer prevention and therapy.


Assuntos
Núcleo Celular/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Nucleotidiltransferases/metabolismo , Reparo de DNA por Recombinação , Transporte Ativo do Núcleo Celular , Adulto , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Nucleotidiltransferases/deficiência , Fosforilação , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ligação Proteica/efeitos dos fármacos , Reparo de DNA por Recombinação/genética , Quinases da Família src/metabolismo
6.
Int J Mol Sci ; 25(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39337287

RESUMO

Goats are natural hosts of Mycobacterium (M.) bovis, and affected herds can be the cause of significant economic losses. Similarites in disease course and lesions of M. bovis infections in goats and M. tuberculosis in humans make goats good models for human tuberculosis. The aim of this investigation was to characterize M. bovis challenge models in goats. For this, goats were endobronchially inoculated with three doses of M. bovis or culture medium. Clinical signs, shedding, and immune responses were monitored until 146 days post inoculation (dpi). At necropsy, lesions were examined by computed tomography, histology, and bacteriological culture. Infected goats did not develop clinical signs. M. bovis was cultured from feces, but never from nasal swabs. IGRAs were positive from 28 dpi onwards, antibodies at 140 dpi, and SICCT at 146 dpi. The increase in CD25+, IFN-γ+, and IFN-γ-releasing T-cell subpopulations was time-related, but not dose-dependent. All infected goats developed paucibacillary granulomas in the lungs and regional lymph nodes. M. bovis was regularly cultured. Dose-dependent effects included the size of pulmonary lesions, caverns, intestinal lesions, and early generalization in the high-dose group. In summary, reproducible challenge models with dose-dependent differences in lesions were established, which may serve for testing vaccines for veterinary or medical use.


Assuntos
Modelos Animais de Doenças , Cabras , Mycobacterium bovis , Tuberculose , Animais , Mycobacterium bovis/patogenicidade , Tuberculose/microbiologia , Tuberculose/veterinária , Tuberculose/patologia , Tuberculose/imunologia , Doenças das Cabras/microbiologia , Pulmão/microbiologia , Pulmão/patologia , Fezes/microbiologia , Interferon gama/metabolismo
7.
J Infect Dis ; 227(2): 211-220, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35975942

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may be associated with worse clinical outcomes in people with human immunodeficiency virus (HIV) (PWH). We report anti-SARS-CoV-2 antibody responses in patients hospitalized with coronavirus disease 2019 in Durban, South Africa, during the second SARS-CoV-2 infection wave dominated by the Beta (B.1.351) variant. METHODS: Thirty-four participants with confirmed SARS-CoV-2 infection were followed up with weekly blood sampling to examine antibody levels and neutralization potency against SARS-CoV-2 variants. Participants included 18 PWH, of whom 11 were HIV viremic. RESULTS: SARS-CoV-2-specific antibody concentrations were generally lower in viremic PWH than in virologically suppressed PWH and HIV-negative participants, and neutralization of the Beta variant was 4.9-fold lower in viremic PWH. Most HIV-negative participants and antiretroviral therapy-suppressed PWH also neutralized the Delta (B.1.617.2) variant, whereas the majority of viremic PWH did not. CD4 cell counts <500/µL were associated with lower frequencies of immunoglobulin G and A seroconversion. In addition, there was a high correlation between a surrogate virus neutralization test and live virus neutralization against ancestral SARS-CoV-2 virus in both PWH and HIV-negative individuals, but correlation decreased for the Beta variant neutralization in PWH. CONCLUSIONS: HIV viremia was associated with reduced Beta variant neutralization. This highlights the importance of HIV suppression in maintaining an effective SARS-CoV-2 neutralization response.


Assuntos
COVID-19 , Infecções por HIV , Humanos , SARS-CoV-2 , HIV , Viremia , África do Sul/epidemiologia , Anticorpos Antivirais , Infecções por HIV/tratamento farmacológico , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes , Testes de Neutralização
8.
Clin Infect Dis ; 76(7): 1304-1310, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36358012

RESUMO

BACKGROUND: Bacille Calmette-Guérin (BCG) vaccination can potentially reduce the rate of respiratory infections in vulnerable populations. This study evaluates the safety and efficacy of VPM1002 (a genetically modified BCG) as prophylaxis against severe respiratory tract infections including coronavirus disease 2019 (COVID-19) in an elderly population. METHODS: In this phase 3, randomized, double-blind, placebo-controlled, multicenter clinical trial, healthy elderly volunteers (N = 2064) were enrolled, randomized (1:1) to receive either VPM1002 or placebo, and followed up remotely for 240 days. The primary outcome was the mean number of days with severe respiratory infections at hospital and/or at home. Secondary endpoints included the incidence of self-reported fever, number of hospital and intensive care unit (ICU) admissions, and number of adverse events. RESULTS: A total of 31 participants in the VPM1002 group reported at least 1 day with severe respiratory disease and a mean number of days with severe respiratory disease of 9.39 ± 9.28 while in the placebo group; 38 participants reported a mean of 14.29 ± 16.25 days with severe respiratory disease. The incidence of self-reported fever was lower in the VPM1002 group (odds ratio, 0.46 [95% confidence interval, .28-.74]; P = .001), and consistent trends to fewer hospitalization and ICU admissions due to COVID-19 were observed after VPM1002 vaccination. Local reactions typical for BCG were observed in the VPM1002-vaccinated group, which were mostly of mild intensity. CONCLUSIONS: Vaccination with VPM1002 is well tolerated and seems to have a prophylactic effect against severe respiratory disease in the elderly. CLINICAL TRIALS REGISTRATION: NCT04435379.


Assuntos
Vacina BCG , COVID-19 , Idoso , Humanos , Vacina BCG/imunologia , Vacina BCG/normas , COVID-19/prevenção & controle , Método Duplo-Cego , Hospitalização/estatística & dados numéricos , SARS-CoV-2 , Doenças Respiratórias/prevenção & controle , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Masculino , Feminino , Fatores de Tempo , Gravidade do Paciente
9.
EMBO Rep ; 22(7): e51678, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33987949

RESUMO

Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio-synthetical target for anti-tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin-9 and exacerbates mycobacterial infection. Administration of AG-specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb-infected mice or Mycobacterium marinum-infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin-9 with high affinity, and galectin-9 associates with transforming growth factor ß-activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal-regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin-9 or inhibition of MMPs blocks AG-induced pathological impairments in the lung, and the AG-galectin-9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin-9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.


Assuntos
Mycobacterium tuberculosis , Peixe-Zebra , Animais , Galactanos , Galectinas/genética , Camundongos
10.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298652

RESUMO

Mouse guanylate-binding proteins (mGBPs) are recruited to various invasive pathogens, thereby conferring cell-autonomous immunity against these pathogens. However, whether and how human GBPs (hGBPs) target M. tuberculosis (Mtb) and L. monocytogenes (Lm) remains unclear. Here, we describe hGBPs association with intracellular Mtb and Lm, which was dependent on the ability of bacteria to induce disruption of phagosomal membranes. hGBP1 formed puncta structures which were recruited to ruptured endolysosomes. Furthermore, both GTP-binding and isoprenylation of hGBP1 were required for its puncta formation. hGBP1 was required for the recovery of endolysosomal integrity. In vitro lipid-binding assays demonstrated direct binding of hGBP1 to PI4P. Upon endolysosomal damage, hGBP1 was targeted to PI4P and PI(3,4)P2-positive endolysosomes in cells. Finally, live-cell imaging demonstrated that hGBP1 was recruited to damaged endolysosomes, and consequently mediated endolysosomal repair. In summary, we uncover a novel interferon-inducible mechanism in which hGBP1 contributes to the repair of damaged phagosomes/endolysosomes.


Assuntos
Proteínas de Ligação ao GTP , Fagossomos , Humanos , Animais , Camundongos , Proteínas de Ligação ao GTP/metabolismo , Fagossomos/metabolismo , Interferons/metabolismo , Endossomos/metabolismo
11.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982586

RESUMO

A more effective vaccine against tuberculosis than Bacille Calmette-Guérin (BCG) is urgently needed. BCG derived recombinant VPM1002 has been found to be more efficacious and safer than the parental strain in mice models. Newer candidates, such as VPM1002 Δpdx1 (PDX) and VPM1002 ΔnuoG (NUOG), were generated to further improve the safety profile or efficacy of the vaccine. Herein, we assessed the safety and immunogenicity of VPM1002 and its derivatives, PDX and NUOG, in juvenile goats. Vaccination did not affect the goats' health in regards to clinical/hematological features. However, all three tested vaccine candidates and BCG induced granulomas at the site of injection, with some of the nodules developing ulcerations approximately one month post-vaccination. Viable vaccine strains were cultured from the injection site wounds in a few NUOG- and PDX- vaccinated animals. At necropsy (127 days post-vaccination), BCG, VPM1002, and NUOG, but not PDX, still persisted at the injection granulomas. All strains, apart from NUOG, induced granuloma formation only in the lymph nodes draining the injection site. In one animal, the administered BCG strain was recovered from the mediastinal lymph nodes. Interferon gamma (IFN-γ) release assay showed that VPM1002 and NUOG induced a strong antigen-specific response comparable to that elicited by BCG, while the response to PDX was delayed. Flow cytometry analysis of IFN-γ production by CD4+, CD8+, and γδ T cells showed that CD4+ T cells of VPM1002- and NUOG-vaccinated goats produced more IFN-γ compared to BCG-vaccinated and mock-treated animals. In summary, the subcutaneous application of VPM1002 and NUOG induced anti-tuberculous immunity, while exhibiting a comparable safety profile to BCG in goats.


Assuntos
Vacina BCG , Tuberculose , Animais , Camundongos , Cabras , Tuberculose/prevenção & controle , Linfócitos T , Vacinação/efeitos adversos
12.
Eur Respir J ; 60(3)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35169026

RESUMO

BACKGROUND: In vitro, animal model and clinical evidence suggests that tuberculosis is not a monomorphic disease, and that host response to tuberculosis is protean with multiple distinct molecular pathways and pathologies (endotypes). We applied unbiased clustering to identify separate tuberculosis endotypes with classifiable gene expression patterns and clinical outcomes. METHODS: A cohort comprised of microarray gene expression data from microbiologically confirmed tuberculosis patients was used to identify putative endotypes. One microarray cohort with longitudinal clinical outcomes was reserved for validation, as were two RNA-sequencing (seq) cohorts. Finally, a separate cohort of tuberculosis patients with functional immune responses was evaluated to clarify stimulated from unstimulated immune responses. RESULTS: A discovery cohort, including 435 tuberculosis patients and 533 asymptomatic controls, identified two tuberculosis endotypes. Endotype A is characterised by increased expression of genes related to inflammation and immunity and decreased metabolism and proliferation; in contrast, endotype B has increased activity of metabolism and proliferation pathways. An independent RNA-seq validation cohort, including 118 tuberculosis patients and 179 controls, validated the discovery results. Gene expression signatures for treatment failure were elevated in endotype A in the discovery cohort, and a separate validation cohort confirmed that endotype A patients had slower time to culture conversion, and a reduced cure rate. These observations suggest that endotypes reflect functional immunity, supported by the observation that tuberculosis patients with a hyperinflammatory endotype have less responsive cytokine production upon stimulation. CONCLUSION: These findings provide evidence that metabolic and immune profiling could inform optimisation of endotype-specific host-directed therapies for tuberculosis.


Assuntos
Transcriptoma , Tuberculose , Citocinas , Humanos , Inflamação , RNA , Tuberculose/genética
13.
Nat Immunol ; 11(12): 1069-72, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21079627

RESUMO

Diseases preventable by underused vaccines cause the death of approximately 3 million children per year. The Global Alliance for Vaccines and Immunization (GAVI) was launched 10 years ago to tackle this appalling situation.


Assuntos
Saúde Global , Programas de Imunização/economia , Programas de Imunização/métodos , Programas de Imunização/organização & administração , Imunização , Vacinas , Criança , Humanos , Cooperação Internacional
14.
Am J Respir Crit Care Med ; 204(7): 826-841, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34256007

RESUMO

Rationale: Suboptimal vaccine immunogenicity and antigenic mismatch, compounded by poor uptake, means that influenza remains a major global disease. T cells recognizing peptides derived from conserved viral proteins could enhance vaccine-induced cross-strain protection. Objectives: To investigate the kinetics, phenotypes, and function of influenza virus-specific CD8+ resident memory T (Trm) cells in the lower airway and infer the molecular pathways associated with their response to infection in vivo. Methods: Healthy volunteers, aged 18-55, were inoculated intranasally with influenza A/California/4/09(H1N1). Blood, upper airway, and (in a subgroup) lower airway samples were obtained throughout infection. Symptoms were assessed by using self-reported diaries, and the nasal viral load was assessed by using quantitative PCR. T-cell responses were analyzed by using a three-color FluoroSpot assay, flow cytometry with MHC I-peptide tetramers, and RNA sequencing, with candidate markers being confirmed by using the immunohistochemistry results for endobronchial biopsy specimens. Measurements and Main Results: After challenge, 57% of participants became infected. Preexisting influenza-specific CD8+ T cells in blood correlated strongly with a reduced viral load, which peaked at Day 3. Influenza-specific CD8+ T cells in BAL fluid were highly enriched and predominantly expressed the Trm markers CD69 and CD103. Comparison between preinfection CD8+ T cells in BAL fluid and blood by using RNA sequencing revealed 3,928 differentially expressed genes, including all major Trm-cell markers. However, gene set enrichment analysis of BAL-fluid CD8+ T cells showed primarily innate cell-related pathways and, during infection, included upregulation of innate chemokines (Cxcl1, Cxcl10, and Cxcl16) that were also expressed by CD8+ cells in bronchial tissues. Conclusions: CD8+ Trm cells in the human lung display innate-like gene and protein expression that demonstrates blurred divisions between innate and adaptive immunity. Clinical study registered with www.clinicaltrials.gov (NCT02755948).


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Inata/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Imunidade Adaptativa/genética , Adolescente , Adulto , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/virologia , Linfócitos T CD8-Positivos/metabolismo , Quimiocinas/metabolismo , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Influenza Humana/genética , Influenza Humana/virologia , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Cinética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Carga Viral , Adulto Jovem
15.
Semin Immunol ; 39: 44-51, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30033150

RESUMO

Recent technological advances have provided deeper insights into the role of small molecules in biological processes. Metabolic profiling has thus entered the arena of -omics studies and rapidly proven its value both as stand-alone and as complement to other more advanced approaches, notably transcriptomics. Here we describe the potential of metabolic profiling for vaccinology embedded in the context of infection and immunity. This discussion is preceded by a description of the relevant technical and analytical tools for biological interpretation of metabolic data. Although not as widely applied as other -omics technologies, we believe that metabolic profiling can make important contributions to the better understanding of mechanisms underlying vaccine-induced responses and their effects on the prevention of infection or disease.


Assuntos
Dengue/metabolismo , Oncocercose/metabolismo , Pneumonia/metabolismo , Raiva/metabolismo , Sepse/metabolismo , Tuberculose/metabolismo , Vacinas/metabolismo , Dengue/imunologia , Dengue/prevenção & controle , Humanos , Metaboloma , Metabolômica/métodos , Oncocercose/imunologia , Oncocercose/prevenção & controle , Pneumonia/imunologia , Pneumonia/prevenção & controle , Análise de Componente Principal , Raiva/imunologia , Raiva/prevenção & controle , Sepse/imunologia , Sepse/prevenção & controle , Biologia de Sistemas/métodos , Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinação , Vacinas/administração & dosagem , Vacinas/síntese química
16.
Proc Natl Acad Sci U S A ; 116(15): 7425-7430, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910977

RESUMO

Serum IgG, which is mainly generated from IgG-secreting plasma cells in the bone marrow (BM), protects our body against various pathogens. We show here that the protein SiiE of Salmonella is both required and sufficient to prevent an efficient humoral immune memory against the pathogen by selectively reducing the number of IgG-secreting plasma cells in the BM. Attenuated SiiE-deficient Salmonella induces high and lasting titers of specific and protective Salmonella-specific IgG and qualifies as an efficient vaccine against Salmonella A SiiE-derived peptide with homology to laminin ß1 is sufficient to ablate IgG-secreting plasma cells from the BM, identifying laminin ß1 as a component of niches for IgG-secreting plasma cells in the BM, and furthermore, qualifies it as a unique therapeutic option to selectively ablate IgG-secreting plasma cells in autoimmune diseases and multiple myeloma.


Assuntos
Células da Medula Óssea/imunologia , Imunidade Humoral , Imunoglobulina G/imunologia , Memória Imunológica , Plasmócitos/imunologia , Salmonella/imunologia , Animais , Células da Medula Óssea/citologia , Imunoglobulina G/genética , Laminina/genética , Laminina/imunologia , Camundongos , Camundongos Knockout , Plasmócitos/citologia , Salmonella/genética
17.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232295

RESUMO

Tuberculous granulomas are highly dynamic structures reflecting the complex host-mycobacterium interactions. The objective of this study was to compare granuloma development at the site of vaccination with BCG and its recombinant derivatives in goats. To characterize the host response, epithelioid cells, multinucleated giant cells (MNGC), T cell subsets, B cells, plasma cells, dendritic cells and mycobacterial antigen were labelled by immunohistochemistry, and lipids and acid-fast bacteria (AFB) were labelled by specific staining. Granulomas with central caseous necrosis developed at the injection site of most goats though lesion size and extent of necrosis differed between vaccine strains. CD4+ T and B cells were more scarce and CD8+ cells were more numerous in granulomas induced by recombinant derivatives compared to their parental BCG strain. Further, the numbers of MNGCs and cells with lipid bodies were markedly lower in groups administered with recombinant BCG strains. Microscopic detection of AFB and mycobacterial antigen was rather frequent in the area of central necrosis, however, the isolation of bacteria in culture was rarely successful. In summary, BCG and its recombinant derivatives induced reproducibly subcutaneous caseous granulomas in goats that can be easily monitored and surgically removed for further studies. The granulomas reflected the genetic modifications of the recombinant BCG-derivatives and are therefore suitable models to compare reactions to different mycobacteria or TB vaccines.


Assuntos
Vacina BCG , Mycobacterium , Tuberculose , Animais , Vacina BCG/efeitos adversos , Cabras , Granuloma/etiologia , Lipídeos , Mycobacterium/genética , Necrose
18.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269842

RESUMO

Mycobacterium tuberculosis (Mtb) represents a major burden to global health, and refined vaccines are needed. Replication-deficient lymphocytic choriomeningitis virus (rLCMV)-based vaccine vectors against cytomegalovirus have proven safe for human use and elicited robust T cell responses in a large proportion of vaccine recipients. Here, we developed an rLCMV vaccine expressing the Mtb antigens TB10.4 and Ag85B. In mice, rLCMV elicited high frequencies of polyfunctional Mtb-specific CD8 and CD4 T cell responses. CD8 but not CD4 T cells were efficiently boosted upon vector re-vaccination. High-frequency responses were also observed in neonatally vaccinated mice, and co-administration of rLCMV with Expanded Program of Immunization (EPI) vaccines did not result in substantial reciprocal interference. Importantly, rLCMV immunization significantly reduced the lung Mtb burden upon aerosol challenge, resulting in improved lung ventilation. Protection was associated with increased CD8 T cell recruitment but reduced CD4 T cell infiltration upon Mtb challenge. When combining rLCMV with BCG vaccination in a heterologous prime-boost regimen, responses to the rLCMV-encoded Mtb antigens were further augmented, but protection was not significantly different from rLCMV or BCG vaccination alone. This work suggests that rLCMV may show utility for neonatal and/or adult vaccination efforts against pulmonary tuberculosis.


Assuntos
Mycobacterium tuberculosis , Animais , Antígenos de Bactérias , Vacina BCG , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Mycobacterium tuberculosis/genética
19.
Eur J Immunol ; 50(9): 1415, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33448355

RESUMO

Retraction: Emoto, M., Emoto, Y., Yoshizawa, I., Kita, E., Shimizu, T., Hurwitz, R., Brinkmann, V. and Kaufmann, S.H.E. (2010), α-GalCer ameliorates listeriosis by accelerating infiltration of Gr-1+ cells into the liver. Eur. J. Immunol., 40: 1328-1341. DOI: https://doi.org/10.1002/eji.200939594 The above article, published online on 16 February 2010 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the Chairman of the Executive Committee of the European Journal of Immunology and Wiley-VCH Verlag GmbH & Co. KGaA. The retraction has been agreed following an investigation carried out by Gunma University (http://www.gunma-u.ac.jp/wp-content/uploads/2017/10/chosakekka29.pdf). The investigation was unable to determine the validity of the images for which Professor Emoto, the article's corresponding author, was responsible. As a result, the journal has made the decision to retract the article.

20.
Eur Respir J ; 58(3)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33574078

RESUMO

BACKGROUND: The World Health Organization recommends standardised treatment durations for patients with tuberculosis (TB). We identified and validated a host-RNA signature as a biomarker for individualised therapy durations for patients with drug-susceptible (DS)- and multidrug-resistant (MDR)-TB. METHODS: Adult patients with pulmonary TB were prospectively enrolled into five independent cohorts in Germany and Romania. Clinical and microbiological data and whole blood for RNA transcriptomic analysis were collected at pre-defined time points throughout therapy. Treatment outcomes were ascertained by TBnet criteria (6-month culture status/1-year follow-up). A whole-blood RNA therapy-end model was developed in a multistep process involving a machine-learning algorithm to identify hypothetical individual end-of-treatment time points. RESULTS: 50 patients with DS-TB and 30 patients with MDR-TB were recruited in the German identification cohorts (DS-GIC and MDR-GIC, respectively); 28 patients with DS-TB and 32 patients with MDR-TB in the German validation cohorts (DS-GVC and MDR-GVC, respectively); and 52 patients with MDR-TB in the Romanian validation cohort (MDR-RVC). A 22-gene RNA model (TB22) that defined cure-associated end-of-therapy time points was derived from the DS- and MDR-GIC data. The TB22 model was superior to other published signatures to accurately predict clinical outcomes for patients in the DS-GVC (area under the curve 0.94, 95% CI 0.9-0.98) and suggests that cure may be achieved with shorter treatment durations for TB patients in the MDR-GIC (mean reduction 218.0 days, 34.2%; p<0.001), the MDR-GVC (mean reduction 211.0 days, 32.9%; p<0.001) and the MDR-RVC (mean reduction of 161.0 days, 23.4%; p=0.001). CONCLUSION: Biomarker-guided management may substantially shorten the duration of therapy for many patients with MDR-TB.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Adulto , Antituberculosos/uso terapêutico , Duração da Terapia , Humanos , Transcriptoma , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA