RESUMO
The nearby radio galaxy M87 offers a unique opportunity to explore the connections between the central supermassive black hole and relativistic jets. Previous studies of the inner region of M87 revealed a wide opening angle for the jet originating near the black hole1-4. The Event Horizon Telescope resolved the central radio source and found an asymmetric ring structure consistent with expectations from general relativity5. With a baseline of 17 years of observations, there was a shift in the jet's transverse position, possibly arising from an 8- to 10-year quasi-periodicity3. However, the origin of this sideways shift remains unclear. Here we report an analysis of radio observations over 22 years that suggests a period of about 11 years for the variation in the position angle of the jet. We infer that we are seeing a spinning black hole that induces the Lense-Thirring precession of a misaligned accretion disk. Similar jet precession may commonly occur in other active galactic nuclei but has been challenging to detect owing to the small magnitude and long period of the variation.
RESUMO
Powerful radio jets from active galactic nuclei are thought to be powered by the accretion of material onto the supermassive black hole (the 'central engine'). M87 is one of the closest examples of this phenomenon, and the structure of its jet has been probed on a scale of about 100 Schwarzschild radii (R(s), the radius of the event horizon). However, the location of the central black hole relative to the jet base (a bright compact radio 'core') remains elusive. Observations of other jets indicate that the central engines are located about 10(4)-10(6)R(s) upstream from the radio core. Here we report radio observations of M87 at six frequencies that allow us to achieve a positional accuracy of about 20 microarcseconds. As the jet base becomes more transparent at higher frequencies, the multifrequency position measurements of the radio core enable us to determine the upstream end of the jet. The data reveal that the central engine of M87 is located within 14-23R(s) of the radio core at 43 GHz. This implies that the site of material infall onto the black hole and the eventual origin of the jet reside in the bright compact region seen on the image at 43 GHz.