Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proteomics ; 15(2-3): 245-59, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25315903

RESUMO

The receptor for advanced glycation end products (RAGE) is one of the most important proteins implicated in diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. It is a pattern recognition receptor by virtue of its ability to interact with multiple ligands, RAGE activates several signal transduction pathways through involvement of various kinases that phosphorylate their respective substrates. Only few substrates have been known to be phosphorylated in response to activation by RAGE (e.g., nuclear factor kappa B); however, it is possible that these kinases can phosphorylate multiple substrates depending upon their expression and localization, leading to altered cellular responses in different cell types and conditions. One such example is, glycogen synthase kinase 3 beta which is known to phosphorylate glycogen synthase, acts downstream to RAGE, and hyperphosphorylates microtubule-associated protein tau causing neuronal damage. Thus, it is important to understand the role of various RAGE-activated kinases and their substrates. Therefore, we have reviewed here the details of RAGE-activated kinases in response to different ligands and their respective phosphoproteome. Furthermore, we discuss the analysis of the data mined for known substrates of these kinases from the PhosphoSitePlus (http://www.phosphosite.org) database, and the role of some of the important substrates involved in cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. In summary, this review provides information on RAGE-activated kinases and their phosphoproteome, which will be helpful in understanding the possible role of RAGE and its ligands in progression of diseases.


Assuntos
Proteínas Quinases/metabolismo , Proteômica/métodos , Receptores Imunológicos/metabolismo , Transdução de Sinais , Animais , Humanos , Fosforilação , Proteoma/metabolismo , Receptor para Produtos Finais de Glicação Avançada
2.
Med Hypotheses ; 142: 109799, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32388478

RESUMO

Alzheimer's disease (AD) is one of the most common forms of neurodegenerative diseases amongst the aged population. The disease is multifactorial, and diabetes has been considered as one of the major risk factors for the development of AD. Chronic hyperglycemic condition in diabetes promotes non-enzymatic protein modification by glucose termed as glycation, which affects protein structure and function. Previous studies have shown that many of the enzymes, including proteases, are affected by glycation. Conversely, glycated proteins are known to become resistant to protease action. In these hypotheses, we have extended these two concepts to the regulation of amyloid-ß protein precursor (AßPP) by secretases leading to amyloid-ß (Aß) accumulation. The first hypothesis deals with the glycation of α-secretases leading to its reduced activity, while in the second hypothesis, AßPP glycation may prevent α-secretases action, rendering its processing by ß secretase. As diabetes is a risk factor for the development of AD, either or both these pathways may operate, leading to the manifestation of AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Idoso , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
3.
J Proteomics ; 156: 104-112, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28132874

RESUMO

Advanced Glycation End products (AGEs) are implicated in aging process. Thus, reducing AGEs by using glycation inhibitors may help in attenuating the aging process. In this study using Saccharomyces cerevisiae yeast system, we show that Aminoguanidine (AMG), a well-known glycation inhibitor, decreases the AGE modification of proteins in non-calorie restriction (NR) (2% glucose) and extends chronological lifespan (CLS) similar to that of calorie restriction (CR) condition (0.5% glucose). Proteomic analysis revealed that AMG back regulates the expression of differentially expressed proteins especially those involved in mitochondrial respiration in NR condition, suggesting that it switches metabolism from fermentation to respiration, mimicking CR. AMG induced back regulation of differentially expressed proteins could be possibly due to its chemical effect or indirectly by glycation inhibition. To delineate this, Metformin (MET), a structural analog of AMG and a mild glycation inhibitor and Hydralazine (HYD), another potent glycation inhibitor but not structural analog of AMG were used. HYD was more effective than MET in mimicking AMG suggesting that glycation inhibition was responsible for restoration of differentially expressed proteins. Thus glycation inhibitors particularly AMG, HYD and MET extend yeast CLS by reducing AGEs, modulating the expression of proteins involved in mitochondrial respiration and possibly by scavenging glucose. SIGNIFICANCE: This study reports the role of glycation in aging process. In the non-caloric restriction condition, carbohydrates such as glucose promote protein glycation and reduce CLS. While, the inhibitors of glycation such as AMG, HYD, MET mimic the caloric restriction condition by back regulating deregulated proteins involved in mitochondrial respiration which could facilitate shift of metabolism from fermentation to respiration and extend yeast CLS. These findings suggest that glycation inhibitors can be potential molecules that can be used in management of aging.


Assuntos
Fenômenos Cronobiológicos , Regulação Fúngica da Expressão Gênica , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Guanidinas/farmacologia , Respiração Celular/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia
4.
Mol Biosyst ; 13(11): 2338-2349, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-28926063

RESUMO

Methylglyoxal (MG) is a highly reactive dicarbonyl known to be elevated under the hyperglycemic conditions of diabetes and is implicated in the development of diabetic complications. Therefore, the current study investigates the role of MG in exacerbating insulin resistance at the insulin signaling level, as well as its effect on the global proteomic level. By using insulin sensitive rat muscle cells (L6) and Chinese hamster ovary (CHO) cells stably expressing the insulin receptor (IR) and a glucose transporter fused with green fluorescent protein (GLUT4-GFP), we have observed that MG impairs insulin signaling, inhibits GLUT4 translocation and reduces glucose uptake. SWATH MS analysis, a label-free quantitative mass spectrometric approach, showed altered expression of 99 proteins out of 2404 identified in response to MG treatment. These proteins are mainly involved in stress response, protein folding and proteolysis. Some of the deregulated proteins such as thioredoxin 2, glutathione S transferase, T complex protein 1 subunit ß (tcbp1), heat shock protein 90 and E3 ubiquitin ligase were previously reported to be associated with either diabetes or insulin resistance. Interestingly, aminoguanidine (AMG), a potent dicarbonyl scavenger, restored the deleterious effects of MG. For the first time, we report that MG induces downregulation of enzymes involved in cholesterol biosynthesis such as acetyl-CoA acetyltransferase, hydroxymethylglutaryl-CoA synthase, farnesyl pyrophosphate synthetase, squalene monooxygenase, and lanosterol synthase. GC MS analysis for sterol metabolites corroborated the proteomic results; MG significantly reduced cholesterol production whereas AMG treatment restored cholesterol production to levels similar to the control. Thus, MG leads to primary defects in insulin signaling and cellular abnormalities at the proteomic and metabolic levels, both of which may contribute to the development of insulin resistance.


Assuntos
Vias Biossintéticas/genética , Colesterol/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Insulina/metabolismo , Aldeído Pirúvico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Regulação para Baixo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA