Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Am Chem Soc ; 146(22): 15525-15537, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779810

RESUMO

Porous organic materials showcasing large framework dynamics present new paths for adsorption and separation with enhanced capacity and selectivity beyond the size-sieving limits, which is attributed to their guest-responsive sorption behaviors. Porous hydrogen-bonded crosslinked organic frameworks (HCOFs) are attractive for their remarkable ability to undergo guest-triggered expansion and contraction facilitated by their flexible covalent crosslinkages. However, the voids of HCOFs remain limited, which restrains the extent of the framework dynamics. In this work, we synthesized a series of HCOFs characterized by unprecedented size expansion capabilities induced by solvents. These HCOFs were constructed by isoreticularly co-crystallizing two complementary sets of hydrogen bonding building blocks to generate porous molecular crystals, which were crosslinked through thiol-ene/yne single-crystal-to-single-crystal transformations. The generated HCOFs exhibit enhanced chemical durability, high crystallinity, and extraordinary framework dynamics. For instance, HCOF-104 crystals featuring a pore diameter of 13.6 Å expanded in DMF to 300 ± 10% of their original lengths within just 1 min. This expansion allows the HCOFs to adsorb guest molecules that are significantly larger than the pore sizes of their crystalline states. Through methanol-induced contraction, these large guests were encapsulated in the fast-contracted HCOFs. These advancements in porous framework dynamics pave the way for new methods of encapsulating guests for targeted delivery.

2.
Chem Soc Rev ; 52(5): 1614-1649, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36779285

RESUMO

The exciting advancements in 3D-printing of soft materials are changing the landscape of materials development and fabrication. Among various 3D-printers that are designed for soft materials fabrication, the direct ink writing (DIW) system is particularly attractive for chemists and materials scientists due to the mild fabrication conditions, compatibility with a wide range of organic and inorganic materials, and the ease of multi-materials 3D-printing. Inks for DIW need to possess suitable viscoelastic properties to allow for smooth extrusion and be self-supportive after printing, but molecularly facilitating 3D printability to functional materials remains nontrivial. While supramolecular binding motifs have been increasingly used for 3D-printing, these inks are largely optimized empirically for DIW. Hence, this review aims to establish a clear connection between the molecular understanding of the supramolecularly bound motifs and their viscoelastic properties at bulk. Herein, extrudable (but not self-supportive) and 3D-printable (self-supportive) polymeric materials that utilize noncovalent interactions, including hydrogen bonding, host-guest inclusion, metal-ligand coordination, micro-crystallization, and van der Waals interaction, have been discussed in detail. In particular, the rheological distinctions between extrudable and 3D-printable inks have been discussed from a supramolecular design perspective. Examples shown in this review also highlight the exciting macroscale functions amplified from the molecular design. Challenges associated with the hierarchical control and characterization of supramolecularly designed DIW inks are also outlined. The perspective of utilizing supramolecular binding motifs in soft materials DIW printing has been discussed. This review serves to connect researchers across disciplines to develop innovative solutions that connect top-down 3D-printing and bottom-up supramolecular design to accelerate the development of 3D-print soft materials for a sustainable future.

3.
J Am Chem Soc ; 145(40): 21723-21728, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37769032

RESUMO

Perchlorate anions used in industry are harmful pollutants in groundwater. Therefore, selectively binding perchlorate provides solutions for environmental remediation. Here, we synthesized a series of tripodal organic cages with highly preorganized Csp3-H bonds that exhibit selectively binding to perchlorate in organic solvents and water. These cages demonstrated binding affinities to perchlorate of 105-106 M-1 at room temperature, along with high selectivity over competing anions, such as iodide and nitrate. Through single crystal structure analysis and density functional theory calculations, we identified unconventional Csp3-H···O interactions as the primary driving force for perchlorate binding. Additionally, we successfully incorporated this cage into a 3D-printable polymer network, showcasing its efficacy in removing perchlorate from water.

4.
Small ; 19(50): e2300323, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37029456

RESUMO

Plants produce a wide range of bioactive phytochemicals, such as antioxidants and vitamins, which play crucial roles in aging prevention, inflammation reduction, and reducing the risk of cancer. Selectively harvesting these phytochemicals, such as lycopene, from tomatoes through the adsorption method is cost-effective and energy efficient. In this work, a templated synthesis of 3D-printed crosslinked cyclodextrin polymers featuring nanotubular structures for highly selective lycopene harvesting is reported. Polypseudorotaxanes formed by triethoxysilane-based telechelic polyethylene glycols and α-cyclodextrins (α-CDs) are designed as the template to (1) synthetically access urethane-based nanotubular structures at the molecular level, and (2) construct 3D-printed architectures with designed macroscale voids. The polypseudorotaxane hydrogels showed good rheological properties for direct ink writing, and the 3D-printed hydrogels were converted to the desired α-CD polymer network through a three-step postprinting transformation. The obtained urethane-crosslinked α-CD monoliths possess nanotubular structures and 3D-printed voids. They selectively adsorb lycopene from raw tomato juice, protecting lycopene from photo- or thermo-degradations. This work highlights the hierarchically templated synthesis approach in developing functional 3D-printing materials by connecting the bottom-up molecular assembly and synthesis with the top-down 3D architecture control and fabrication.


Assuntos
Ciclodextrinas , Licopeno , Ciclodextrinas/química , Hidrogéis/química , Impressão Tridimensional , Uretana
5.
Angew Chem Int Ed Engl ; 62(50): e202311601, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37870901

RESUMO

Boron trifluoride (BF3 ) is a highly corrosive gas widely used in industry. Confining BF3 in porous materials ensures safe and convenient handling and prevents its degradation. Hence, it is highly desired to develop porous materials with high adsorption capacity, high stability, and resistance to BF3 corrosion. Herein, we designed and synthesized a Lewis basic single-crystalline hydrogen-bond crosslinked organic framework (HC OF-50) for BF3 storage and its application in catalysis. Specifically, we introduced self-complementary ortho-alkoxy-benzamide hydrogen-bonding moieties to direct the formation of highly organized hydrogen-bonded networks, which were subsequently photo-crosslinked to generate HC OFs. The HC OF-50 features Lewis basic thioether linkages and electron-rich pore surfaces for BF3 uptake. As a result, HC OF-50 shows a record-high 14.2 mmol/g BF3 uptake capacity. The BF3 uptake in HC OF-50 is reversible, leading to the slow release of BF3 . We leveraged this property to reduce the undesirable chain transfer and termination in the cationic polymerization of vinyl ethers. Polymers with higher molecular weights and lower polydispersity were generated compared to those synthesized using BF3 ⋅ Et2 O. The elucidation of the structure-property relationship, as provided by the single-crystal X-ray structures, combined with the high BF3 uptake capacity and controlled sorption, highlights the molecular understanding of framework-guest interactions in addressing contemporary challenges.

6.
Angew Chem Int Ed Engl ; 61(52): e202214189, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36331335

RESUMO

Iodine is widely used as an antimicrobial reagent for water disinfection in the wilderness and outer space, but residual iodine and iodide need to be removed for health reasons. Currently, it is challenging to remove low concentrations of iodine and iodide in water (≈5 ppm). Furthermore, the remediation of iodine and iodide across a broad temperature range (up to 90 °C) has not previously been investigated. In this work, we report a nitrate dimer-directed synthesis of a single-crystalline ionic hydrogen-bonded crosslinked organic framework (HC OF-7). HC OF-7 removes iodine and iodide species in water efficiently through halogen bonding and anion exchange, reducing the total iodine concentration to 0.22 ppm at room temperature. Packed HC OF-7 columns were employed for iodine/iodide breakthrough experiments between 23 and 90 °C, and large breakthrough volumes were recorded (≥18.3 L g-1 ). The high iodine/iodide removal benchmarks recorded under practical conditions make HC OF-7 a promising adsorbent for water treatment.


Assuntos
Iodo , Poluentes Químicos da Água , Purificação da Água , Iodetos/química , Iodo/química , Compostos Orgânicos , Desinfecção , Poluentes Químicos da Água/química
7.
Angew Chem Int Ed Engl ; 60(18): 10186-10193, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33606898

RESUMO

The development of integrated systems that mimic the multi-stage stiffness change of marine animals such as the sea cucumber requires the design of molecularly tailored structures. Herein, we used an integrated biomimicry design to fabricate a sea cucumber mimic using sidechain polypseudorotaxanes with tunable nano-to-macroscale properties. A series of polyethylene glycol (PEG)-based sidechain copolymers were synthesized to form sidechain polypseudorotaxanes with α-cyclodextrins (α-CDs). By tailoring the copolymers' molecular weights and their PEG grafting densities, we rationally tuned the sizes of the formed polypseudorotaxanes crystalline domain and the physical crosslinking density of the hydrogels, which facilitated 3D printing and the mechanical adaptability to these hydrogels. After 3D printing and photo-crosslinking, the obtained hydrogels exhibited large tensile strain and broad elastic-to-plastic variations upon α-CD (de)threading. These discoveries enabled a successful fabrication of a sea cucumber mimic, demonstrating multi-stage stiffness changes.


Assuntos
Polímeros/síntese química , Rotaxanos/síntese química , Animais , Estrutura Molecular , Polietilenoglicóis/química , Polímeros/química , Rotaxanos/química , Pepinos-do-Mar
8.
Angew Chem Int Ed Engl ; 60(43): 23176-23181, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34378288

RESUMO

The development of large pore single-crystalline covalently linked organic frameworks is critical in revealing the detailed structure-property relationship with substrates. One emergent approach is to photo-crosslink hydrogen-bonded molecular crystals. Introducing complementary hydrogen-bonded carboxylic acid building blocks is promising to construct large pore networks, but these molecules often form interpenetrated networks or non-porous solids. Herein, we introduced heteromeric carboxylic acid dimers to construct a non-interpenetrated molecular crystal. Crosslinking this crystal precursor with dithiols afforded a large pore single-crystalline hydrogen-bonded crosslinked organic framework HC OF-101. X-ray diffraction analysis revealed HC OF-101 as an interlayer connected hexagonal network, which possesses flexible linkages and large porous channels to host a hydrazone photoswitch. Multicycle Z/E-isomerization of the hydrazone took place reversibly within HC OF-101, showcasing the potential use of HC OF-101 for optical information storage.

9.
J Am Chem Soc ; 141(13): 5154-5158, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30912659

RESUMO

Covalent organic frameworks (COFs) are crystalline polymers with permanent porosity. They are usually synthesized as micrometer-sized powders or two-dimensional thin films and membranes for applications in molecular storage, separation, and catalysis. In this work, we report a general method to integrate COFs with imine or ß-ketoenamine linkages into three-dimensional (3D)-printing materials. A 3D-printing template, Pluronic F127, was introduced to coassemble with imine polymers in an aqueous environment. By limitation of the degree of imine polycondensation during COF formation, the amorphous imine polymer and F127 form coassembled 3D-printable hydrogels with suitable shear thinning and rapid self-healing properties. After the removal of F127 followed by an amorphous-to-crystalline transformation, three ß-ketoenamine- and imine-based COFs were fabricated into 3D monoliths possessing high crystallinity, hierarchical pores with high surface areas, good structural integrity, and robust mechanical stability. Moreover, when multiple COF precursor inks were employed for 3D printing, heterogeneous dual-component COF monoliths were fabricated with high spatial precision. This method not only enables the development of COFs with sophisticated 3D macrostructure but also facilitates the heterogeneous integration of COFs into devices with interconnected interfaces at the molecular level.

10.
J Am Chem Soc ; 141(27): 10915-10923, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31246447

RESUMO

Covalently linked single-crystalline porous organic materials are highly desired for structure-property analysis; however, periodically polymerizing organic entities into high dimensional networks is challenging. Here, we report a series of topologically divergent single-crystalline hydrogen-bonded cross-linked organic frameworks (HCOFs) with visible guest-induced elastic expansions, which mutually integrate high structural order and high flexibility into one framework. These HCOFs are synthesized by photo-cross-linking molecular crystals with alkyldithiols of different chain lengths. Their detailed structural information was revealed by single-crystal X-ray analysis and experimental investigations of HCOFs and their corresponding single-crystalline analogues. Upon guest adsorption, HCOF-2 crystals composed of a 3D self-entangled polymer network undergo anisotropic expansion to more than twice their original size, while the 2D-bilayer HCOF-3 crystals exhibit visible, layered sorption bands and form delaminated sheets along the plane of its 2D layers. The dynamic expansion of HCOF networks creates guest-induced porosity with over 473% greater volume than their permanent voids, as calculated from their record-breaking aqueous iodine adsorption capacities. Temperature-gated DMSO sorption investigations illustrated that the flexible nature of cross-linkers in HCOFs provides positive entropy from the coexistence of multiple conformations to allow for elastic expansion and contraction of the frameworks.

11.
Chemistry ; 25(46): 10768-10781, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31087700

RESUMO

The rapid development of additive manufacturing techniques, also known as three-dimensional (3D) printing, is driving innovations in polymer chemistry, materials science, and engineering. Among current 3D printing techniques, direct ink writing (DIW) employs viscoelastic materials as inks, which are capable of constructing sophisticated 3D architectures at ambient conditions. In this perspective, polymer designs that meet the rheological requirements for direct ink writing are outlined and successful examples are summarized, which include the development of polymer micelles, co-assembled hydrogels, supramolecularly cross-linked systems, polymer liquids with microcrystalline domains, and hydrogels with dynamic covalent cross-links. Furthermore, advanced polymer designs that reinforce the mechanical properties of these 3D printing materials, as well as the integration of functional moieties to these materials are discussed to inspire new polymer designs for direct ink writing and broadly 3D printing.

12.
Small ; 19(50): e2309837, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38087994
13.
Angew Chem Int Ed Engl ; 57(18): 5105-5109, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29505167

RESUMO

Integrating intelligent molecular systems into 3D printing materials and transforming their molecular functions to the macroscale with controlled superstructures will unleash great potential for the development of smart materials. Compared to macromolecular 3D printing materials, self-assembled small-molecule-based 3D printing materials are very rare owing to the difficulties of facilitating 3D printability as well as preserving their molecular functions macroscopically. Herein, we report a general approach for the integration of functional small molecules into 3D printing materials for direct ink writing through the introduction of a supramolecular template. A variety of inorganic and organic small-molecule-based inks were 3D-printed, and their superstructures were refined by post-printing hierarchical co-assembly. Through spatial and temporal control of individual molecular events from the nano- to the macroscale, fine-tuned macroscale features were successfully installed in the monoliths.

14.
J Am Chem Soc ; 139(21): 7172-7175, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28506061

RESUMO

A crystalline microporous hydrogen-bonded cross-linked organic framework has been developed through covalent photo-cross-linking of molecular monomers that are assembled in a crystalline state. The elastic framework expands its void space to adsorb iodine rapidly with a high uptake capacity in an aqueous environment as well as recovering its crystalline form after the release of iodine.

15.
Chem Soc Rev ; 45(14): 3766-80, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27030885

RESUMO

Click chemistry describes a family of modular, efficient, versatile and reliable reactions which have acquired a pivotal role as one of the most useful synthetic tools with a potentially broad range of applications. While copper(i)-catalysed alkyne-azide cycloaddition is the most widely adopted click reaction in the family, the fact that it is cytotoxic restricts its practice in certain situations, e.g., bioconjugation. Consequently, researchers have been exploring the development of copper-free click reactions, the most popular example so far being strain-promoted alkyne-azide cycloadditions. An early example of copper-free click reactions that is rarely mentioned in the literature is the cucurbit[6]uril (CB6) catalysed alkyne-azide cycloaddition (CB-AAC). Despite the unique ability of CB-AAC to generate mechanically interlocked molecules (MIMs) - in particular, rotaxanes - its slow reaction rate and narrow substrate acceptance limit its scope. In this Tutorial Review, we describe our efforts of late in developing the fundamental principles and practical applications of a new copper-free click reaction - namely, cooperative capture synthesis, whereby introducing a cyclodextrin (CD) as an accelerator in CB-AAC, hydrogen bonding networks are formed between the rims of CD and CB6 in a manner that is positively cooperative, giving rise to a high level of pre-organisation during efficient and quick rotaxane formation. For example, [4]rotaxanes can be prepared nearly quantitatively within a minute in water. Furthermore, we have demonstrated that CB-AAC can accommodate a wider substrate tolerance by introducing pillararenes as promoters. To date, we have put cooperative capture synthesis into practice by (i) preparing polyrotaxanes containing up to 200 rings in nearly quantitative yields, (ii) trapping conformational isomers of polymacrocycles as rings in rotaxanes, (iii) demonstrating solid-state fluorescence and Förster resonance energy transfer (FRET) processes by fixing the fluorophores in a rotaxane and (iv) establishing the principle of supramolecular encryption in the preparation of dynamically and reversibly tunable fluorescent security inks.

16.
Angew Chem Int Ed Engl ; 56(16): 4452-4457, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28326657

RESUMO

Amplification of molecular motions into the macroscopic world has great potential in the development of smart materials. Demonstrated here is an approach that integrates mechanically interlocked molecules into complex three-dimensional (3D) architectures by direct-write 3D printing. The design and synthesis of polypseudorotaxane hydrogels, which are composed of α-cyclodextrins and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers, and their subsequent fabrication into polyrotaxane-based lattice cubes by 3D printing followed by post-printing polymerization are reported. By switching the motion of the α-cyclodextrin rings between random shuttling and stationary states through solvent exchange, the polyrotaxane monolith not only exhibits macroscopic shape-memory properties but is also capable of converting the chemical energy input into mechanical work by lifting objects against gravity.

17.
Chemistry ; 22(35): 12301-6, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27338246

RESUMO

Covalent and supramolecular polymerizations, both of which offer their own unique advantages, have emerged as popular strategies for making artificial materials. Herein, we describe a concurrent covalent and supramolecular polymerization strategy-namely, one which utilizes 1) a bis-azide-functionalized diazaperopyrenium dication that undergoes polymeriation covalently with a bis-alkyne-functionalized biphenyl derivative in one dimension as a result of a rapid and efficient ß-cyclodextrin(CD)-accelerated, cucurbit[6]uril(CB)-templated azide-alkyne cycloaddition, while 2) the aromatic core of the dication is able to dimerize in a criss-cross fashion by dint of π-π interactions, enabling simultaneous supramolecular assembly, resulting in an extended polymer network in an orthogonal dimension.

18.
J Am Chem Soc ; 136(42): 14702-5, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25254970

RESUMO

A challenge in contemporary chemistry is the realization of artificial molecular machines that can perform work in solution on their environments. Here, we report on the design and production of a supramolecular flashing energy ratchet capable of processing chemical fuel generated by redox changes to drive a ring in one direction relative to a dumbbell toward an energetically uphill state. The kinetics of the reaction pathway juxtapose a low energy [2]pseudorotaxane that forms under equilibrium conditions with a high energy, metastable [2]pseudorotaxane which resides away from equilibrium.


Assuntos
Rotaxanos/química , Modelos Moleculares , Conformação Molecular , Oxirredução , Compostos de Piridínio/química , Termodinâmica
19.
Chemistry ; 20(39): 12628-35, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25146580

RESUMO

The photothermal effect is the generation of heat by molecules or particles upon high-energy laser irradiation, and near-infrared absorbers such as gold nanoparticles and organic dyes have a range of potential photothermal applications. The favourable photothermal properties of thiophene-functionalised croconaine dyes were recently discovered. The synthesis and properties of novel croconaine rotaxane and pseudorotaxane architectures capable of efficient photothermal performance in both organic and aqueous environments are reported. The versatility of this dye-encapsulation strategy was demonstrated by the preparation of two organic croconaine rotaxanes using different synthetic methods: the formation of an aqueous pseudorotaxane association complex, and the synthesis of water-soluble, croconaine-doped silicated micelle nanoparticles. All of these near-infrared-absorbing systems exhibit excellent photothermal behaviour, with pseudorotaxane and rotaxane formation vital for effective aqueous heat generation. Dye encapsulation provides steric protection to enhance the stability of a water-sensitive croconaine dye, while rotaxane-doped nanoparticles avoid detrimental band broadening caused by chromophore coupling.

20.
Chem Commun (Camb) ; 60(57): 7311-7314, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38912870

RESUMO

Two hydrogen-bonded crosslinked organic frameworks (HCOFs) were synthesized via free radical reactions utilizing butadiene and isoprene as crosslinkers. These HCOFs exhibit high crystallinity, enabling detailed structural characterization via single-crystal X-ray diffraction analysis. Subsequently, one of the olefin-rich HCOFs was converted to a hydroxylated framework through hydroboration-oxidation while maintaining the high crystallinity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA