RESUMO
BACKGROUND: Microbiota are recognized to play a major role in regulation of immunity through release of immunomodulatory metabolites such as short-chain fatty acids (SCFAs). Rhinoviruses (RVs) induce upper respiratory tract illnesses and precipitate exacerbations of asthma and chronic obstructive pulmonary disease through poorly understood mechanisms. Local interactions between SCFAs and antiviral immune responses in the respiratory tract have not been previously investigated. OBJECTIVE: We sought to investigate whether pulmonary metabolite manipulation through lung-delivered administration of SCFAs can modulate antiviral immunity to RV infection. METHODS: We studied the effects of intranasal administration of the SCFAs acetate, butyrate, and propionate on basal expression of antiviral signatures, and of acetate in a mouse model of RV infection and in RV-infected lung epithelial cell lines. We additionally assessed the effects of acetate, butyrate, and propionate on RV infection in differentiated human primary bronchial epithelial cells. RESULTS: Intranasal acetate administration induced basal upregulation of IFN-ß, an effect not observed with other SCFAs. Butyrate induced RIG-I expression. Intranasal acetate treatment of mice increased interferon-stimulated gene and IFN-λ expression during RV infection and reduced lung virus loads at 8 hours postinfection. Acetate ameliorated virus-induced proinflammatory responses with attenuated pulmonary mucin and IL-6 expression observed at day 4 and 6 postinfection. This interferon-enhancing effect of acetate was confirmed in human bronchial and alveolar epithelial cell lines. In differentiated primary bronchial epithelial cells, butyrate treatment better modulated IFN-ß and IFN-λ gene expression during RV infection. CONCLUSIONS: SCFAs augment antiviral immunity and reduce virus load and proinflammatory responses during RV infection.
Assuntos
Infecções por Enterovirus , Infecções por Picornaviridae , Humanos , Camundongos , Animais , Antivirais/uso terapêutico , Rhinovirus , Propionatos/farmacologia , Propionatos/uso terapêutico , Interferons , Brônquios , Células Epiteliais , Acetatos/farmacologia , Acetatos/uso terapêutico , Butiratos/farmacologia , Butiratos/uso terapêuticoRESUMO
BACKGROUND: Rhinoviruses are the predominant cause of respiratory viral infections and are strongly associated with asthma exacerbations. While humoral immunity plays an important role during virus infections, cellular aspects of this response are less well understood. Here, we investigated the antiviral response of circulating B cells upon experimental rhinovirus infection in healthy individuals and asthma patients. METHODS: We purified B cells from experimentally infected healthy individuals and patients with asthma and subjected them to total RNA-sequencing. Rhinovirus-derived RNA was measured in isolated B cells using a highly sensitive PCR. B cells were stimulated with rhinovirus in vitro to further study gene expression, expression of antiviral proteins and B-cell differentiation in response rhinovirus stimulation. Protein expression of pro-inflammatory cytokines in response to rhinovirus was assessed using a proximity extension assay. RESULTS: B cells isolated from experimentally infected subjects exhibited an antiviral gene profile linked to IFN-alpha, carried viral RNA in vivo and were transiently infected by rhinovirus in vitro. B cells rapidly differentiated into plasmablasts upon rhinovirus stimulation. While B cells lacked expression of interferons in response to rhinovirus exposure, co-stimulation with rhinovirus and IFN-alpha upregulated pro-inflammatory cytokine expression suggesting a potential new function of B cells during virus infections. Asthma patients showed extensive upregulation and dysregulation of antiviral gene expression. CONCLUSION: These findings add to the understanding of systemic effects of rhinovirus infections on B-cell responses in the periphery, show potential dysregulation in patients with asthma and might also have implications during infection with other respiratory viruses.
Assuntos
Asma , Infecções por Picornaviridae , Antivirais/uso terapêutico , Citocinas/farmacologia , Humanos , Interferons , RhinovirusRESUMO
Rationale: Chronic obstructive pulmonary disease (COPD) is a condition punctuated by acute exacerbations commonly triggered by viral and/or bacterial infection. Early identification of exacerbation triggers is important to guide appropriate therapy, but currently available tests are slow and imprecise. Volatile organic compounds (VOCs) can be detected in exhaled breath and have the potential to be rapid tissue-specific biomarkers of infection etiology. Objectives: To determine whether volatile organic compound measurement could distinguish viral from bacterial infection in COPD. Methods: We used serial sampling within in vitro and in vivo studies to elucidate the dynamic changes that occur in VOC production during acute respiratory viral infection. Highly sensitive gas chromatography-mass spectrometry techniques were used to measure VOC production from infected airway epithelial-cell cultures and in exhaled breath samples from healthy subjects experimentally challenged with rhinovirus (RV)-A16 and from subjects with COPD with naturally occurring exacerbations. Measurements and Main Results: We identified a novel VOC signature comprising decane and other long-chain alkane compounds that is induced during RV infection of cultured airway epithelial cells and is also increased in the exhaled breath from healthy subjects experimentally challenged with RV and from patients with COPD during naturally occurring viral exacerbations. These compounds correlated with the magnitude of antiviral immune responses, viral burden, and exacerbation severity but were not induced by bacterial infection, suggesting that they represent a specific virus-inducible signature. Conclusions: Our study highlights the potential for measurement of exhaled breath VOCs as rapid, noninvasive biomarkers of viral infection. Further studies are needed to determine whether measurement of these signatures could be used to guide more targeted therapy with antibiotic/antiviral agents for COPD exacerbations.
Assuntos
Biomarcadores/análise , Testes Respiratórios/métodos , Diagnóstico Precoce , Infecções por Picornaviridae/diagnóstico , Infecções por Picornaviridae/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Compostos Orgânicos Voláteis/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Rationale: Type 2 innate lymphoid cells (ILC2s) are significant sources of type 2 cytokines, which are implicated in the pathogenesis of asthma and asthma exacerbations. The role of ILC2s in virus-induced asthma exacerbations is not well characterized. Objectives: To characterize pulmonary ILC responses following experimental rhinovirus challenge in patients with moderate asthma and healthy subjects. Methods: Patients with moderate asthma and healthy subjects were inoculated with rhinovirus-16 and underwent bronchoscopy at baseline and at Day 3, and Day 8 after inoculation. Pulmonary ILC1s and ILC2s were quantified in bronchoalveolar lavage using flow cytometry. The ratio of bronchoalveolar lavage ILC2:ILC1 was assessed to determine their relative contributions to the clinical and immune response to rhinovirus challenge. Measurements and Main Results: At baseline, ILC2s were significantly higher in patients with asthma than in healthy subjects. At Day 8, ILC2s significantly increased from baseline in both groups, which was significantly higher in patients with asthma than in healthy subjects (all comparisons P < 0.05). In healthy subjects, ILC1s increased from baseline at Day 3 (P = 0.001), while in patients with asthma, ILC1s increased from baseline at Day 8 (P = 0.042). Patients with asthma had significantly higher ILC2:ILC1 ratios at baseline (P = 0.024) and Day 8 (P = 0.005). Increased ILC2:ILC1 ratio in patients with asthma correlated with clinical exacerbation severity and type 2 cytokines in nasal mucosal lining fluid. Conclusions: An ILC2-predominant inflammatory profile in patients with asthma was associated with increased severity and duration of rhinovirus infection compared with healthy subjects, supporting the potential role of ILC2s in the pathogenesis of virus-induced asthma exacerbations.
Assuntos
Asma/etiologia , Asma/imunologia , Asma/virologia , Progressão da Doença , Imunidade Inata , Infecções por Picornaviridae/complicações , Fatores de Virulência/imunologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: Respiratory infections with rhinoviruses (RV) are strongly associated with development and exacerbations of asthma, and they pose an additional health risk for subjects with allergy. OBJECTIVE: How RV infections and chronic allergic diseases are linked and what role RV plays in the breaking of tolerance in regulatory T (Treg) cells is unknown. Therefore, this study aims to investigate the effects of RV on Treg cells. METHODS: Treg cells were isolated from subjects with asthma and controls after experimental infection with the RV-A16 (RV16) and analyzed with next-generation sequencing. Additionally, suppression assays, quantitative PCR assays, and protein quantifications were performed with Treg cells after in vitro RV16 infection. RESULTS: RV16 induced a strong antiviral response in Treg cells from subjects with asthma and controls, including the upregulation of IFI44L, MX1, ISG15, IRF7, and STAT1. In subjects with asthma, the inflammatory response was exaggerated and showed a dysregulated immune response compared with that in the controls. Furthermore, subjects with asthma failed to upregulate several immunosuppressive molecules such as CTLA4 and CD69, and they upregulated the inflammasome-related genes PYCARD and AIM2. Additionally, RV16 reduced the suppressive capacity of Treg cells from healthy subjects and subjects with asthma in vitro and increased TH2 cell-type cytokine production. CONCLUSIONS: Treg cells from healthy subjects and subjects with asthma displayed an antiviral response after RV infection and showed reduced suppressive capacity. These data suggest that Treg cell function might be altered or impaired during RV infections, which might play an important role in the association between RV and the development of asthma and asthma exacerbations.
Assuntos
Asma/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus , Linfócitos T Reguladores/imunologia , Adolescente , Adulto , Citocinas/imunologia , Feminino , Humanos , Masculino , Rhinovirus/genética , Adulto JovemRESUMO
BACKGROUND: Respiratory viral infection causes chronic obstructive pulmonary disease (COPD) exacerbations. We previously reported increased bronchial mucosa eosinophil and neutrophil inflammation in patients with COPD experiencing naturally occurring exacerbations. But it is unclear whether virus per se induces bronchial mucosal inflammation, nor whether this relates to exacerbation severity. OBJECTIVES: We sought to determine the extent and nature of bronchial mucosal inflammation following experimental rhinovirus (RV)-16-induced COPD exacerbations and its relationship to disease severity. METHODS: Bronchial mucosal inflammatory cell phenotypes were determined at preinfection baseline and following experimental RV infection in 17 Global Initiative for Chronic Obstructive Lung Disease stage II subjects with COPD and as controls 20 smokers and 11 nonsmokers with normal lung function. No subject had a history of asthma/allergic rhinitis: all had negative results for aeroallergen skin prick tests. RESULTS: RV infection increased the numbers of bronchial mucosal eosinophils and neutrophils only in COPD and CD8+ T lymphocytes in patients with COPD and nonsmokers. Monocytes/macrophages, CD4+ T lymphocytes, and CD20+ B lymphocytes were increased in all subjects. At baseline, compared with nonsmokers, subjects with COPD and smokers had increased numbers of bronchial mucosal monocytes/macrophages and CD8+ T lymphocytes but fewer numbers of CD4+ T lymphocytes and CD20+ B lymphocytes. The virus-induced inflammatory cells in patients with COPD were positively associated with virus load, illness severity, and reductions in lung function. CONCLUSIONS: Experimental RV infection induces bronchial mucosal eosinophilia and neutrophilia only in patients with COPD and monocytes/macrophages and lymphocytes in both patients with COPD and control subjects. The virus-induced inflammatory cell phenotypes observed in COPD positively related to virus load and illness severity. Antiviral/anti-inflammatory therapies could attenuate bronchial inflammation and ameliorate virus-induced COPD exacerbations.
Assuntos
Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/diagnóstico , Infecções por Picornaviridae/virologia , Doença Pulmonar Obstrutiva Crônica/complicações , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Rhinovirus , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Biomarcadores , Eosinófilos , Feminino , Humanos , Mediadores da Inflamação , Contagem de Leucócitos , Masculino , Neutrófilos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Testes de Função Respiratória , Índice de Gravidade de Doença , Escarro/citologia , Escarro/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
BACKGROUND: The innate immune system senses viral infection through pattern recognition receptors (PRRs), leading to type I interferon production. The role of type I interferon and PPRs in rhinovirus-induced asthma exacerbations in vivo are uncertain. OBJECTIVES: We sought to compare bronchial mucosal type I interferon and PRR expression at baseline and after rhinovirus infection in atopic asthmatic patients and control subjects. METHODS: Immunohistochemistry was used to detect expression of IFN-α, IFN-ß, and the PRRs: Toll-like receptor 3, melanoma differentiation-associated gene 5, and retinoic acid-inducible protein I in bronchial biopsy specimens from 10 atopic asthmatic patients and 15 nonasthmatic nonatopic control subjects at baseline and on day 4 and 6 weeks after rhinovirus infection. RESULTS: We observed IFN-α/ß deficiency in the bronchial epithelium at 3 time points in asthmatic patients in vivo. Lower epithelial IFN-α/ß expression was related to greater viral load, worse airway symptoms, airway hyperresponsiveness, and reductions in lung function during rhinovirus infection. We found lower frequencies of bronchial subepithelial monocytes/macrophages expressing IFN-α/ß in asthmatic patients during infection. Interferon deficiency at baseline was not accompanied by deficient PRR expression in asthmatic patients. Both epithelial and subepithelial PRR expression were induced during rhinovirus infection. Rhinovirus infection-increased numbers of subepithelial interferon/PRR-expressing inflammatory cells were related to greater viral load, airway hyperresponsiveness, and reductions in lung function. CONCLUSIONS: Bronchial epithelial IFN-α/ß expression and numbers of subepithelial IFN-α/ß-expressing monocytes/macrophages during infection were both deficient in asthmatic patients. Lower epithelial IFN-α/ß expression was associated with adverse clinical outcomes after rhinovirus infection in vivo. Increases in numbers of subepithelial cells expressing interferon/PRRs during infection were also related to greater viral load/illness severity.
Assuntos
Asma/imunologia , Proteína DEAD-box 58/imunologia , Regulação da Expressão Gênica/imunologia , Helicase IFIH1 Induzida por Interferon/biossíntese , Interferon-alfa/imunologia , Interferon beta/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Receptor 3 Toll-Like/imunologia , Adulto , Asma/metabolismo , Asma/patologia , Biópsia , Brônquios/imunologia , Brônquios/metabolismo , Brônquios/patologia , Proteína DEAD-box 58/biossíntese , Feminino , Humanos , Helicase IFIH1 Induzida por Interferon/imunologia , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Masculino , Infecções por Picornaviridae/metabolismo , Infecções por Picornaviridae/patologia , Receptores Imunológicos , Rhinovirus/metabolismo , Índice de Gravidade de Doença , Receptor 3 Toll-Like/biossínteseRESUMO
BACKGROUND: Exacerbations of asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous. OBJECTIVE: We sought to investigate the sputum cellular, mediator, and microbiome profiles of both asthma and COPD exacerbations. METHODS: Patients with severe asthma or moderate-to-severe COPD were recruited prospectively to a single center. Sputum mediators were available in 32 asthmatic patients and 73 patients with COPD assessed at exacerbation. Biologic clusters were determined by using factor and cluster analyses on a panel of sputum mediators. Patterns of clinical parameters, sputum mediators, and microbiome communities were assessed across the identified clusters. RESULTS: The asthmatic patients and patients with COPD had different clinical characteristics and inflammatory profiles but similar microbial ecology. Three exacerbation biologic clusters were identified. Cluster 1 was COPD predominant, with 27 patients with COPD and 7 asthmatic patients exhibiting increased blood and sputum neutrophil counts, proinflammatory mediators (IL-1ß, IL-6, IL-6 receptor, TNF-α, TNF receptors 1 and 2, and vascular endothelial growth factor), and proportions of the bacterial phylum Proteobacteria. Cluster 2 had 10 asthmatic patients and 17 patients with COPD with increased blood and sputum eosinophil counts, type 2 mediators (IL-5, IL-13, CCL13, CCL17, and CCL26), and proportions of the bacterial phylum Bacteroidetes. Cluster 3 had 15 asthmatic patients and 29 patients with COPD with increased type 1 mediators (CXCL10, CXCL11, and IFN-γ) and proportions of the phyla Actinobacteria and Firmicutes. CONCLUSIONS: A biologic clustering approach revealed 3 subgroups of asthma and COPD exacerbations, each with different percentages of patients with overlapping asthma and COPD. The sputum mediator and microbiome profiles were distinct between clusters.
Assuntos
Asma/imunologia , Asma/microbiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Adulto , Asma/metabolismo , Feminino , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Masculino , Microbiota , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Escarro/imunologia , Escarro/metabolismo , Escarro/microbiologiaRESUMO
BACKGROUND: Patients with chronic obstructive pulmonary disease (COPD) have increased susceptibility to respiratory tract infection, which contributes to disease progression and mortality, but mechanisms of increased susceptibility to infection remain unclear. OBJECTIVES: The aim of this study was to determine whether glucose concentrations were increased in airway samples (nasal lavage fluid, sputum, and bronchoalveolar lavage fluid) from patients with stable COPD and to determine the effects of viral infection on sputum glucose concentrations and how airway glucose concentrations relate to bacterial infection. METHODS: We measured glucose concentrations in airway samples collected from patients with stable COPD and smokers and nonsmokers with normal lung function. Glucose concentrations were measured in patients with experimentally induced COPD exacerbations, and these results were validated in patients with naturally acquired COPD exacerbations. Relationships between sputum glucose concentrations, inflammatory markers, and bacterial load were examined. RESULTS: Sputum glucose concentrations were significantly higher in patients with stable COPD compared with those in control subjects without COPD. In both experimental virus-induced and naturally acquired COPD exacerbations, sputum and nasal lavage fluid glucose concentrations were increased over baseline values. There were significant correlations between sputum glucose concentrations and sputum inflammatory markers, viral load, and bacterial load. Airway samples with higher glucose concentrations supported more Pseudomonas aeruginosa growth in vitro. CONCLUSIONS: Airway glucose concentrations are increased in patients with stable COPD and further increased during COPD exacerbations. Increased airway glucose concentrations might contribute to bacterial infections in both patients with stable and those with exacerbated COPD. This has important implications for the development of nonantibiotic therapeutic strategies for the prevention or treatment of bacterial infection in patients with COPD.
Assuntos
Glucose/metabolismo , Infecções por Pseudomonas/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Infecções Respiratórias/metabolismo , Idoso , Carga Bacteriana , Líquido da Lavagem Broncoalveolar/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Líquido da Lavagem Nasal/química , Infecções por Picornaviridae/metabolismo , Infecções por Picornaviridae/microbiologia , Infecções por Pseudomonas/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Sistema Respiratório/metabolismo , Sistema Respiratório/microbiologia , Infecções Respiratórias/microbiologia , Fumar/metabolismo , Escarro/metabolismo , Carga ViralRESUMO
BACKGROUND: Bacterial airway colonization is known to alter the airway mucosa immune response in neonates whereas the impact of viruses is unknown. The objective was therefore to examine the effect of respiratory viruses on the immune signature in the airways of asymptomatic neonates. METHODS: Nasal aspirates from 571 asymptomatic 1-month-old neonates from the Copenhagen Prospective Studies on Asthma in Childhood 2010 birth cohort were investigated for respiratory viruses. Simultaneously, unstimulated airway mucosal lining fluid was obtained and quantified for levels of 20 immune mediators related to type 1, type 2, type 17, and regulatory immune paths. The association between immune mediator levels and viruses was tested by conventional statistics and partial least square discriminant analysis. RESULTS: Picornaviruses were detected in 58 neonates (10.2%) and other viruses in 10 (1.8%). A general up-regulation of immune mediators was found in the neonates with picornavirus (P < .0001; partial least square discriminant analysis). The association was pronounced for type 1- and type 2-related markers and was unaffected by comprehensive confounder adjustment. Detection of picornavirus and bacteria was associated with an additive general up-regulating effect. CONCLUSIONS: Asymptomatic presence of picornavirus in the neonatal airway is a potent activator of the topical immune response. This is relevant to understanding the immune potentiating effect of early life exposure to viruses.
Assuntos
Citocinas/análise , Nasofaringe/imunologia , Infecções por Picornaviridae/imunologia , Picornaviridae/imunologia , Mucosa Respiratória/imunologia , Infecções Assintomáticas , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Nasofaringe/virologia , Mucosa Respiratória/virologiaRESUMO
Human rhinovirus (RV) infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of â¼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2) capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Pulmão/imunologia , Rhinovirus/imunologia , Animais , Asma/imunologia , Asma/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/farmacologia , Resfriado Comum/genética , Resfriado Comum/imunologia , Resfriado Comum/prevenção & controle , Reações Cruzadas , Feminino , Humanos , Imunização , Pulmão/virologia , Camundongos , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/virologia , Rhinovirus/genética , Vacinas ViraisRESUMO
Rhinovirus infections are the major cause of asthma exacerbations. We hypothesised that IL-15, a cytokine implicated in innate and acquired antiviral immunity, may be deficient in asthma and important in the pathogenesis of asthma exacerbations. We investigated regulation of IL-15 induction by rhinovirus in human macrophages in vitro, IL-15 levels in bronchoalveolar lavage (BAL) fluid and IL-15 induction by rhinovirus in BAL macrophages from asthmatic and control subjects, and related these to outcomes of infection in vivo. Rhinovirus induced IL-15 in macrophages was replication-, NF-κB- and α/ß interferon-dependent. BAL macrophage IL-15 induction by rhinovirus was impaired in asthmatics and inversely related to lower respiratory symptom severity during experimental rhinovirus infection. IL-15 levels in BAL fluid were also decreased in asthmatics and inversely related with airway hyperresponsiveness and with virus load during in vivo rhinovirus infection. Deficient IL-15 production in asthma may be important in the pathogenesis of asthma exacerbations.
Assuntos
Asma/imunologia , Macrófagos Alveolares/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Asma/patologia , Asma/virologia , Feminino , Células HeLa , Humanos , Interferon-alfa/imunologia , Interferon beta/imunologia , Interleucina-15 , Macrófagos Alveolares/patologia , Macrófagos Alveolares/virologia , Masculino , NF-kappa B/imunologia , Infecções por Picornaviridae/patologia , Carga Viral/imunologiaRESUMO
Rhinoviruses are the major cause of asthma exacerbations, and asthmatics have increased susceptibility to rhinovirus and risk of invasive bacterial infections. Here we show deficient induction of interferon-lambdas by rhinovirus in asthmatic primary bronchial epithelial cells and alveolar macrophages, which was highly correlated with severity of rhinovirus-induced asthma exacerbation and virus load in experimentally infected human volunteers. Induction by lipopolysaccharide in asthmatic macrophages was also deficient and correlated with exacerbation severity. These results identify previously unknown mechanisms of susceptibility to infection in asthma and suggest new approaches to prevention and/or treatment of asthma exacerbations.
Assuntos
Asma/fisiopatologia , Citocinas/biossíntese , Interleucinas/biossíntese , Infecções por Picornaviridae/complicações , Rhinovirus/metabolismo , Asma/complicações , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Humanos , Interferons , Lipopolissacarídeos/farmacologiaRESUMO
RATIONALE: Chronic obstructive pulmonary disease (COPD) exacerbations are associated with virus (mostly rhinovirus) and bacterial infections, but it is not known whether rhinovirus infections precipitate secondary bacterial infections. OBJECTIVES: To investigate relationships between rhinovirus infection and bacterial infection and the role of antimicrobial peptides in COPD exacerbations. METHODS: We infected subjects with moderate COPD and smokers and nonsmokers with normal lung function with rhinovirus. Induced sputum was collected before and repeatedly after rhinovirus infection and virus and bacterial loads measured with quantitative polymerase chain reaction and culture. The antimicrobial peptides secretory leukoprotease inhibitor (SLPI), elafin, pentraxin, LL-37, α-defensins and ß-defensin-2, and the protease neutrophil elastase were measured in sputum supernatants. MEASUREMENTS AND MAIN RESULTS: After rhinovirus infection, secondary bacterial infection was detected in 60% of subjects with COPD, 9.5% of smokers, and 10% of nonsmokers (P < 0.001). Sputum virus load peaked on Days 5-9 and bacterial load on Day 15. Sputum neutrophil elastase was significantly increased and SLPI and elafin significantly reduced after rhinovirus infection exclusively in subjects with COPD with secondary bacterial infections, and SLPI and elafin levels correlated inversely with bacterial load. CONCLUSIONS: Rhinovirus infections are frequently followed by secondary bacterial infections in COPD and cleavage of the antimicrobial peptides SLPI and elafin by virus-induced neutrophil elastase may precipitate these secondary bacterial infections. Therapy targeting neutrophil elastase or enhancing innate immunity may be useful novel therapies for prevention of secondary bacterial infections in virus-induced COPD exacerbations.
Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Coinfecção/etiologia , Infecções por Picornaviridae/complicações , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/virologia , Rhinovirus , Adulto , Idoso , Análise de Variância , Infecções Bacterianas/etiologia , Infecções Bacterianas/fisiopatologia , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Estudos de Coortes , Coinfecção/fisiopatologia , Progressão da Doença , Elafina/análise , Elafina/metabolismo , Feminino , Humanos , Mediadores da Inflamação/análise , Masculino , Pessoa de Meia-Idade , Infecções por Picornaviridae/fisiopatologia , Reação em Cadeia da Polimerase/métodos , Prognóstico , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/complicações , Medição de Risco , Inibidor Secretado de Peptidases Leucocitárias/análise , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Componente Amiloide P Sérico/análise , Componente Amiloide P Sérico/metabolismo , Índice de Gravidade de Doença , Fumar , Escarro/citologia , Estatísticas não ParamétricasRESUMO
Rhinoviruses and allergens, such as house dust mite are major agents responsible for asthma exacerbations. The influence of pre-existing airway inflammation on the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely unknown. We analyse mechanisms of response to viral infection in experimental in vivo rhinovirus infection in healthy controls and patients with asthma, and in in vitro experiments with house dust mite, rhinovirus and SARS-CoV-2 in human primary airway epithelium. Here, we show that rhinovirus infection in patients with asthma leads to an excessive RIG-I inflammasome activation, which diminishes its accessibility for type I/III interferon responses, leading to their early functional impairment, delayed resolution, prolonged viral clearance and unresolved inflammation in vitro and in vivo. Pre-exposure to house dust mite augments this phenomenon by inflammasome priming and auxiliary inhibition of early type I/III interferon responses. Prior infection with rhinovirus followed by SARS-CoV-2 infection augments RIG-I inflammasome activation and epithelial inflammation. Timely inhibition of the epithelial RIG-I inflammasome may lead to more efficient viral clearance and lower the burden of rhinovirus and SARS-CoV-2 infections.
Assuntos
Fatores de Restrição Antivirais , Asma , COVID-19 , Proteína DEAD-box 58 , Inflamassomos , Rhinovirus , Humanos , Fatores de Restrição Antivirais/genética , Fatores de Restrição Antivirais/metabolismo , Asma/genética , Asma/imunologia , COVID-19/genética , COVID-19/imunologia , Proteína DEAD-box 58/metabolismo , Infecções por Enterovirus/genética , Infecções por Enterovirus/imunologia , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação , Interferon Tipo I , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/imunologia , Rhinovirus/metabolismo , Rhinovirus/patogenicidade , SARS-CoV-2RESUMO
RATIONALE: Respiratory virus infections are associated with chronic obstructive pulmonary disease (COPD) exacerbations, but a causative relationship has not been proven. Studies of naturally occurring exacerbations are difficult and the mechanisms linking virus infection to exacerbations are poorly understood. We hypothesized that experimental rhinovirus infection in subjects with COPD would reproduce the features of naturally occurring COPD exacerbations and is a valid model of COPD exacerbations. OBJECTIVES: To evaluate experimental rhinovirus infection as a model of COPD exacerbation and to investigate the mechanisms of virus-induced exacerbations. METHODS: We used experimental rhinovirus infection in 13 subjects with COPD and 13 nonobstructed control subjects to investigate clinical, physiologic, pathologic, and antiviral responses and relationships between virus load and these outcomes. MEASUREMENTS AND MAIN RESULTS: Clinical data; inflammatory mediators in blood, sputum, and bronchoalveolar lavage; and viral load in nasal lavage, sputum, and bronchoalveolar lavage were measured at baseline and after infection with rhinovirus 16. After rhinovirus infection subjects with COPD developed lower respiratory symptoms, airflow obstruction, and systemic and airway inflammation that were greater and more prolonged compared with the control group. Neutrophil markers in sputum related to clinical outcomes and virus load correlated with inflammatory markers. Virus load was higher and IFN production by bronchoalveolar lavage cells was impaired in the subjects with COPD. CONCLUSIONS: We have developed a new model of COPD exacerbation that strongly supports a causal relationship between rhinovirus infection and COPD exacerbations. Impaired IFN production and neutrophilic inflammation may be important mechanisms in virus-induced COPD exacerbations.
Assuntos
Progressão da Doença , Infecções por Picornaviridae , Doença Pulmonar Obstrutiva Crônica/virologia , Rhinovirus , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Mediadores da Inflamação/análise , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Carga ViralRESUMO
RATIONALE: Exacerbations of chronic obstructive pulmonary disease (COPD) are heterogeneous with respect to inflammation and etiology. OBJECTIVES: Investigate biomarker expression in COPD exacerbations to identify biologic clusters and determine biomarkers that recognize clinical COPD exacerbation phenotypes, namely those associated with bacteria, viruses, or eosinophilic airway inflammation. METHODS: Patients with COPD were observed for 1 year at stable and exacerbation visits. Biomarkers were measured in sputum and serum. Viruses and selected bacteria were assessed in sputum by polymerase chain reaction and routine diagnostic bacterial culture. Biologic phenotypes were explored using unbiased cluster analysis and biomarkers that differentiated clinical exacerbation phenotypes were investigated. MEASUREMENTS AND MAIN RESULTS: A total of 145 patients (101 men and 44 women) entered the study. A total of 182 exacerbations were captured from 86 patients. Four distinct biologic exacerbation clusters were identified. These were bacterial-, viral-, or eosinophilic-predominant, and a fourth associated with limited changes in the inflammatory profile termed "pauciinflammatory." Of all exacerbations, 55%, 29%, and 28% were associated with bacteria, virus, or a sputum eosinophilia. The biomarkers that best identified these clinical phenotypes were sputum IL-1ß, 0.89 (area under receiver operating characteristic curve) (95% confidence interval [CI], 0.830.95); serum CXCL10, 0.83 (95% CI, 0.700.96); and percentage peripheral eosinophils, 0.85 (95% CI, 0.780.93), respectively. CONCLUSIONS: The heterogeneity of the biologic response of COPD exacerbations can be defined. Sputum IL-1ß, serum CXCL10, and peripheral eosinophils are biomarkers of bacteria-, virus-, or eosinophil-associated exacerbations of COPD. Whether phenotype-specific biomarkers can be applied to direct therapy warrants further investigation.
Assuntos
Doença Pulmonar Obstrutiva Crônica/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Quimiocina CXCL10/sangue , Análise por Conglomerados , Eosinófilos/metabolismo , Eosinófilos/microbiologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/metabolismo , Curva ROC , Índice de Gravidade de Doença , Escarro/metabolismo , Escarro/microbiologiaRESUMO
Respiratory syncytial virus (RSV) is a major cause of bronchiolitis in infants. It is also responsible for high morbidity and mortality in the elderly. Programmed death ligands (PD-Ls) on antigen-presenting cells interact with receptors on T cells to regulate immune responses. The programmed death receptor-ligand 1/programmed death receptor 1 (PD-L1-PD-1) pathway is inhibitory in chronic viral infections, but its role in acute viral infections is unclear. We hypothesized that bronchial epithelial cell (BEC) expression of PD-Ls would inhibit local effector CD8(+) T cell function. We report that RSV infection of primary human BECs strongly induces PD-L1 expression. In a co-culture system of BECs with purified CD8(+) T cells, we demonstrated that RSV-infected BECs increased CD8(+) T cell activation, proliferation, and antiviral function. Blocking PD-L1 on RSV-infected BECs co-cultured with CD8(+) T cells enhanced CD8(+) T cell IFN-γ, IL-2, and granzyme B production. It also decreased the virus load of the BECs. Based on our findings, we believe therapeutic strategies that target the PD-L1-PD-1 pathway might increase antiviral immune responses to RSV and other acute virus infections.
Assuntos
Antígenos CD/biossíntese , Linfócitos T CD8-Positivos/imunologia , Células Epiteliais/virologia , Tolerância Imunológica , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/patogenicidade , Apoptose , Antígeno B7-H1 , Células Cultivadas , Técnicas de Cocultura , HumanosRESUMO
Acute exacerbations are the major cause of asthma morbidity, mortality, and health-care costs and are difficult to treat and prevent. The majority of asthma exacerbations are associated with rhinovirus (RV) infection, but evidence supporting a causal relationship is weak and mechanisms are poorly understood. We hypothesized that in asthmatic, but not normal, subjects RV infection would induce clinical, physiologic, and pathologic lower airway responses typical of an asthma exacerbation and that these changes would be related to virus replication and impaired T helper 1 (Th1)/IL-10 or augmented Th2 immune responses. We investigated physiologic, virologic, and immunopathologic responses to experimental RV infection in blood, induced sputum, and bronchial lavage in 10 asthmatic and 15 normal volunteers. RV infection induced significantly greater lower respiratory symptoms and lung function impairment and increases in bronchial hyperreactivity and eosinophilic lower airway inflammation in asthmatic compared with normal subjects. In asthmatic, but not normal, subjects virus load was significantly related to lower respiratory symptoms, bronchial hyperreactivity, and reductions in blood total and CD8(+) lymphocytes; lung function impairment was significantly related to neutrophilic and eosinophilic lower airway inflammation. The same virologic and clinical outcomes were strongly related to deficient IFN-gamma and IL-10 responses and to augmented IL-4, IL-5, and IL-13 responses. This study demonstrates increased RV-induced clinical illness severity in asthmatic compared with normal subjects, provides evidence of strong relationships between virus load, lower airway virus-induced inflammation and asthma exacerbation severity, and indicates augmented Th2 or impaired Th1 or IL-10 immunity are likely important mechanisms.