Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Neurobiol ; 32(1): 42-55, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36919335

RESUMO

Amyloid precursor protein (APP) plays an important role in the pathogenesis of Alzheimer's disease (AD), but the normal function of APP at synapses is poorly understood. We and others have found that APP interacts with Reelin and that each protein is individually important for dendritic spine formation, which is associated with learning and memory, in vitro. However, whether Reelin acts through APP to modulate dendritic spine formation or synaptic function remains unknown. In the present study, we found that Reelin treatment significantly increased dendritic spine density and PSD-95 puncta number in primary hippocampal neurons. An examination of the molecular mechanisms by which Reelin regulates dendritic spinogenesis revealed that Reelin enhanced hippocampal dendritic spine formation in a Ras/ERK/CREB signaling-dependent manner. Interestingly, Reelin did not increase dendritic spine number in primary hippocampal neurons when APP expression was reduced or in vivo in APP knockout (KO) mice. Taken together, our data are the first to demonstrate that Reelin acts cooperatively with APP to modulate dendritic spine formation and suggest that normal APP function is critical for Reelin-mediated dendritic spinogenesis at synapses.

2.
J Psychopharmacol ; 27(4): 386-95, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23104248

RESUMO

The lipoprotein receptor ligand Reelin is important for the processes of normal synaptic plasticity, dendritic morphogenesis, and learning and memory. Heterozygous reeler mice (HRM) show many neuroanatomical, biochemical, and behavioral features that are associated with schizophrenia. HRM show subtle morphological defects including reductions in dendritic spine density, altered synaptic plasticity and behavioral deficits in associative learning and memory and pre-pulse inhibition. The present studies test the hypothesis that in vivo elevation of Reelin levels can rescue synaptic and behavioral phenotypes associated with HRM. We demonstrate that a single in vivo injection of Reelin increases GAD67 expression and alters dendritic spine morphology. In parallel we observed enhancement of hippocampal synaptic function and associative learning and memory. Reelin supplementation also increases pre-pulse inhibition. These results suggest that characteristics of HRM, similar to those observed in schizophrenia, are sensitive to Reelin levels and can be modified with Reelin supplementation in male and female adults.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Transtornos Neurológicos da Marcha/metabolismo , Deficiências da Aprendizagem/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Esquizofrenia/metabolismo , Serina Endopeptidases/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Cruzamentos Genéticos , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Proteínas da Matriz Extracelular/genética , Feminino , Transtornos Neurológicos da Marcha/etiologia , Glutamato Descarboxilase/metabolismo , Heterozigoto , Hipocampo/metabolismo , Aprendizagem , Deficiências da Aprendizagem/etiologia , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/genética , Inibição Neural , Neurônios/metabolismo , Proteína Reelina , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Filtro Sensorial , Serina Endopeptidases/genética , Transmissão Sináptica
3.
Brain Res ; 1415: 96-102, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21872217

RESUMO

Fyn is a Src-family tyrosine kinase that affects long term potentiation (LTP), synapse formation, and learning and memory. Fyn is also implicated in dendritic spine formation both in vitro and in vivo. However, whether Fyn's regulation of dendritic spine formation is brain-region specific and age-dependent is unknown. In the present study, we systematically examined whether Fyn altered dendritic spine density and morphology in the cortex and hippocampus and if these effects were age-dependent. We found that Fyn knockout mice trended toward a decrease in dendritic spine density in cortical layers II/III, but not in the hippocampus, at 1 month of age. Additionally, Fyn knockout mice had significantly decreased dendritic spine density in both the cortex and hippocampus at 3 months and 1 year, and Fyn's effect on dendritic spine density was age-dependent in the hippocampus. Moreover, Fyn knockout mice had wider spines at the three time points (1 month, 3 months, 1 year) in the cortex. These findings suggest that Fyn regulates dendritic spine number and morphology over time and provide further support for Fyn's role in maintaining proper synaptic function in vivo.


Assuntos
Córtex Cerebral/citologia , Dendritos/ultraestrutura , Espinhas Dendríticas/patologia , Hipocampo/citologia , Neurônios/ultraestrutura , Proteínas Proto-Oncogênicas c-fyn/deficiência , Fatores Etários , Animais , Dendritos/patologia , Espinhas Dendríticas/ultraestrutura , Camundongos , Camundongos Knockout , Neurônios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA