RESUMO
OBJECTIVES: This study aimed to assess the performance of a "Silent" zero time of echo (ZTE) sequence for T1-weighted brain imaging using a 7 T MRI system. METHODS: The Silent sequence was evaluated qualitatively by two neuroradiologists, as well as quantitatively in terms of tissue contrast, homogeneity, signal-to-noise ratio (SNR) and acoustic noise. It was compared to conventional T1-weighted imaging (FSPGR). Adequacy for automated segmentation was evaluated in comparison with FSPGR acquired at 7 T and 1.5 T. Specific absorption rate (SAR) was also measured. RESULTS: Tissue contrast and homogeneity in Silent were remarkable in deep brain structures and in the occipital and temporal lobes. Mean tissue contrast was significantly (p < 0.002) higher in Silent (0.25) than in FSPGR (0.11), which favoured automated tissue segmentation. On the other hand, Silent images had lower SNR with respect to conventional imaging: average SNR of FSPGR was 2.66 times that of Silent. Silent images were affected by artefacts related to projection reconstruction, which nevertheless did not compromise the depiction of brain tissues. Silent acquisition was 35 dB(A) quieter than FSPGR and less than 2.5 dB(A) louder than ambient noise. Six-minute average SAR was <2 W/kg. CONCLUSIONS: The ZTE Silent sequence provides high-contrast T1-weighted imaging with low acoustic noise at 7 T. KEY POINTS: ⢠"Silent" is an MRI technique allowing zero time of echo acquisition ⢠Its feasibility and performance were assessed on a 7 T MRI system ⢠Image quality in several regions was higher than in conventional techniques ⢠Imaging acoustic noise was dramatically reduced compared with conventional imaging ⢠"Silent" is suitable for T1-weighted head imaging at 7 T.
Assuntos
Artefatos , Encéfalo/diagnóstico por imagem , Previsões , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Razão Sinal-Ruído , Adulto JovemRESUMO
OBJECTIVE: Zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences for MRI offer unique advantages of being able to detect signal from rapidly decaying short-T2 tissue components. In this paper, we applied 3D ZTE and UTE pulse sequences at 7T to assess differences between these methods. MATERIALS AND METHODS: We matched the ZTE and UTE pulse sequences closely in terms of readout trajectories and image contrast. Our ZTE used the water- and fat-suppressed solid-state proton projection imaging method to fill the center of k-space. Images from healthy volunteers obtained at 7T were compared qualitatively, as well as with SNR and CNR measurements for various ultrashort, short, and long-T2 tissues. RESULTS: We measured nearly identical contrast-to-noise and signal-to-noise ratios (CNR/SNR) in similar scan times between the two approaches for ultrashort, short, and long-T2 components in the brain, knee and ankle. In our protocol, we observed gradient fidelity artifacts in UTE, and our chosen flip angle and readout also resulted in shading artifacts in ZTE due to inadvertent spatial selectivity. These can be corrected by advanced reconstruction methods or with different chosen protocol parameters. CONCLUSION: The applied ZTE and UTE pulse sequences achieved similar contrast and SNR efficiency for volumetric imaging of ultrashort-T2 components. Key differences include that ZTE is limited to volumetric imaging, but has substantially reduced acoustic noise levels during the scan. Meanwhile, UTE has higher acoustic noise levels and greater sensitivity to gradient fidelity, but offers more flexibility in image contrast and volume selection.
Assuntos
Imageamento por Ressonância Magnética , Acústica , Algoritmos , Tornozelo/diagnóstico por imagem , Artefatos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Meios de Contraste/química , Voluntários Saudáveis , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador , Joelho/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/fisiopatologia , Imagens de Fantasmas , Razão Sinal-RuídoRESUMO
INTRODUCTION: This contribution presents a magnetic resonance imaging (MRI) acquisition technique named Tissue Border Enhancement (TBE), whose purpose is to produce images with enhanced visualization of borders between two tissues of interest without any post-processing. METHODS: The technique is based on an inversion recovery sequence that employs an appropriate inversion time to produce images where the interface between two tissues of interest is hypo-intense; therefore, tissue borders are clearly represented by dark lines. This effect is achieved by setting imaging parameters such that two neighboring tissues of interest have magnetization with equal magnitude but opposite sign; therefore, the voxels containing a mixture of each tissue (that is, the tissue interface) possess minimal net signal. The technique was implemented on a 7.0 T MRI system. RESULTS: This approach can assist the definition of tissue borders, such as that between cortical gray matter and white matter; therefore, it could facilitate segmentation procedures, which are often challenging on ultra-high-field systems due to inhomogeneous radiofrequency distribution. TBE allows delineating the contours of structural abnormalities, and its capabilities were demonstrated with patients with focal cortical dysplasia, gray matter heterotopia, and polymicrogyria. CONCLUSION: This technique provides a new type of image contrast and has several possible applications in basic neuroscience, neurogenetic research, and clinical practice, as it could improve the detection power of MRI in the characterization of cortical malformations, enhance the contour of small anatomical structures of interest, and facilitate cortical segmentation.
Assuntos
Algoritmos , Encefalopatias/patologia , Encéfalo/patologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
PURPOSE: To implement and examine the feasibility of a three-dimensional (3D) ultrashort TE (UTE) sequence on a 7 Tesla (T) clinical MR scanner in comparison with 3T MRI at high isotropic resolution. MATERIALS AND METHODS: Using an in-house built saddle coil at both field strengths we have imaged mid-diaphysial sections of five fresh cadaveric specimens of the distal tibia. An additional in vivo scan was performed at 7 Tesla using a quadrature knee coil. RESULTS: Using the same type of saddle coil at both field strengths, a significant increase in SNR at 7T compared with 3T (factor 1.7) was found. Significantly shorter T2* values were found at the higher field strength (T2* = 552.2 ± 126 µs at 7T versus T2* = 1163 ± 391 µs at 3T). CONCLUSION: UHF MRI at 7T has great potential for imaging tissues with short T2.
Assuntos
Algoritmos , Imagem Ecoplanar/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Tíbia/anatomia & histologia , Cadáver , Estudos de Viabilidade , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
OBJECTIVE: The objectives of the study were to optimize three cartilage-dedicated sequences for in vivo knee imaging at 7.0 T ultra-high-field (UHF) magnetic resonance imaging (MRI) and to compare imaging performance and diagnostic confidence concerning osteoarthritis (OA)-induced changes at 7.0 and 3.0 T MRI. MATERIALS AND METHODS: Optimized MRI sequences for cartilage imaging at 3.0 T were tailored for 7.0 T: an intermediate-weighted fast spin-echo (IM-w FSE), a fast imaging employing steady-state acquisition (FIESTA) and a T1-weighted 3D high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) sequence. Three healthy subjects and seven patients with mild OA were examined. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diagnostic confidence in assessing cartilage abnormalities, and image quality were determined. Abnormalities were assessed with the whole organ magnetic resonance imaging score (WORMS). Focal cartilage lesions and bone marrow edema pattern (BMEP) were also quantified. RESULTS: At 7.0 T, SNR was increased (p < 0.05) for all sequences. For the IM-w FSE sequence, limitations with the specific absorption rate (SAR) required modifications of the scan parameters yielding an incomplete coverage of the knee joint, extensive artifacts, and a less effective fat saturation. CNR and image quality were increased (p < 0.05) for SPGR and FIESTA and decreased for IM-w FSE. Diagnostic confidence for cartilage lesions was highest (p < 0.05) for FIESTA at 7.0 T. Evaluation of BMEP was decreased (p < 0.05) at 7.0 T due to limited performance of IM-w FSE. CONCLUSION: Gradient echo-based pulse sequences like SPGR and FIESTA are well suited for imaging at UHF which may improve early detection of cartilage lesions. However, UHF IM-w FSE sequences are less feasible for clinical use.
Assuntos
Cartilagem Articular/patologia , Articulação do Joelho/patologia , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino , Osteoartrite do Joelho , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
High polarization of nuclear spins in liquid state through dynamic nuclear polarization has enabled the direct monitoring of 13C metabolites in vivo at very high signal-to-noise, allowing for rapid assessment of tissue metabolism. The abundant SNR afforded by this hyperpolarization technique makes high-resolution 13C 3D-MRSI feasible. However, the number of phase encodes that can be fit into the short acquisition time for hyperpolarized imaging limits spatial coverage and resolution. To take advantage of the high SNR available from hyperpolarization, we have applied compressed sensing to achieve a factor of 2 enhancement in spatial resolution without increasing acquisition time or decreasing coverage. In this paper, the design and testing of compressed sensing suited for a flyback 13C 3D-MRSI sequence are presented. The key to this design was the undersampling of spectral k-space using a novel blipped scheme, thus taking advantage of the considerable sparsity in typical hyperpolarized 13C spectra. Phantom tests validated the accuracy of the compressed sensing approach and initial mouse experiments demonstrated in vivo feasibility.
Assuntos
Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Neoplasias da Próstata/metabolismo , Animais , Isótopos de Carbono , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Masculino , Camundongos , Imagens de Fantasmas , Processamento de Sinais Assistido por ComputadorRESUMO
Diffusion tensor imaging (DTI) noninvasively depicts white matter connectivity in regions where the Gaussian model of diffusion is valid but yields inaccurate results in those where diffusion has a more complex distribution, such as fiber crossings. q-ball imaging (QBI) overcomes this limitation of DTI by more fully characterizing the angular dependence of intravoxel diffusion with larger numbers of diffusion-encoding directional measurements at higher diffusion-weighting factors (b values). However, the former technique results in longer acquisition times and the latter technique results in a lower signal-to-noise ratio (SNR). In this project, we developed specialized 7-T acquisition methods utilizing novel radiofrequency pulses, eight-channel parallel imaging EPI and high-order shimming with a phase-sensitive multichannel B0 field map reconstruction. These methods were applied in initial healthy adult volunteer studies, which demonstrated the feasibility of performing 7-T QBI. Preliminary comparisons of 3 T with 7 T within supratentorial crossing white matter tracts documented a 79.5% SNR increase for b=3000 s/mm2 (P=.0001) and a 38.6% SNR increase for b=6000 s/mm2 (P=.015). With spherical harmonic reconstruction of the q-ball orientation distribution function at b=3000 s/mm2, 7-T QBI allowed for accurate visualization of crossing fiber tracts with fewer diffusion-encoding acquisitions as compared with 3-T QBI. The improvement of 7-T QBI at b factors as high as 6000 s/mm2 resulted in better angular resolution as compared with 3-T QBI for depicting fibers crossing at shallow angles. Although the increased susceptibility effects at 7 T caused problematic distortions near brain-air interfaces at the skull base and posterior fossa, these initial 7-T QBI studies demonstrated excellent quality in much of the supratentorial brain, with significant improvements as compared with 3-T acquisitions in the same individuals.
Assuntos
Mapeamento Encefálico/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Adulto , Anisotropia , Humanos , MasculinoRESUMO
Ultra-high-field 7 T magnetic resonance (MR) scanners offer the potential for greatly improved MR spectroscopic imaging due to increased sensitivity and spectral resolution. Prior 7 T human single-voxel MR Spectroscopy (MRS) studies have shown significant increases in signal-to-noise ratio (SNR) and spectral resolution as compared to lower magnetic fields but have not demonstrated the increase in spatial resolution and multivoxel coverage possible with 7 T MR spectroscopic imaging. The goal of this study was to develop specialized radiofrequency (RF) pulses and sequences for three-dimensional (3D) MR spectroscopic imaging (MRSI) at 7 T to address the challenges of increased chemical shift misregistration, B1 power limitations, and increased spectral bandwidth. The new 7 T MRSI sequence was tested in volunteer studies and demonstrated the feasibility of obtaining high-SNR phased-array 3D MRSI from the human brain.
Assuntos
Mapeamento Encefálico/métodos , Imageamento Tridimensional , Espectroscopia de Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e EspecificidadeRESUMO
PURPOSE: Greater spatial resolution in intracranial three-dimensional time-of-flight (TOF) magnetic resonance angiography (MRA) is possible at higher field strengths, due to the increased contrast-to-noise ratio (CNR) from the higher signal-to-noise ratio and the improved background suppression. However, at very high fields, spatial resolution is limited in practice by the acquisition time required for sequential phase encoding. In this study, we applied parallel imaging to 7T TOF MRA studies of normal volunteers and patients with vascular disease, in order to obtain very high resolution (0.12 mm(3)) images within a reasonable scan time. MATERIALS AND METHODS: Custom parallel imaging acquisition and reconstruction methods were developed for 7T MRA, based on generalized autocalibrating partially parallel acquisition (GRAPPA). The techniques were compared and applied to studies of seven normal volunteers and three patients with cerebrovascular disease. RESULTS: The technique produced high resolution studies free from discernible reconstruction artifacts in all subjects and provided excellent depiction of vascular pathology in patients. CONCLUSIONS: 7T TOF MRA with parallel imaging is a valuable noninvasive angiographic technique that can attain very high spatial resolution.
Assuntos
Transtornos Cerebrovasculares/patologia , Angiografia por Ressonância Magnética/métodos , Automação , Calibragem , Estudos de Casos e Controles , Humanos , Processamento de Imagem Assistida por Computador , Imageamento TridimensionalRESUMO
Recent technological progress in the multiband echo planer imaging (MB EPI) technique enables accelerated MR diffusion weighted imaging (DWI) and allows whole brain, multi-b-value diffusion imaging to be acquired within a clinically feasible time. However, its applications at 7 T have been limited due to B1 field inhomogeneity and increased susceptibility artifact. It is an ongoing debate whether DWI at 7 T can be performed properly in patients, and a systematic SNR comparison for multiband spin-echo EPI between 3 T and 7 T has not been methodically studied. The goal of this study was to use MB EPI at 7 T in order to obtain 90-directional multi-shell DWI within a clinically feasible acquisition time for patients with glioma. This study included an SNR comparison between 3 T and 7 T, and the application of B1 mapping and distortion correction procedures for reducing the impact of variations in B0 and B1. The optimized multiband sequence was applied in 20 patients with glioma to generate both DTI and NODDI maps for comparison of values in tumor and normal appearing white matter (NAWM). Our SNR analysis showed that MB EPI at 7 T was comparable to that at 3 T, and the data quality acquired in patients was clinically acceptable. NODDI maps provided unique contrast within the T2 lesion that was not seen in anatomical images or DTI maps. Such contrast may reflect the complexity of tissue compositions associated with disease progression and treatment effects. The ability to consistently obtain high quality diffusion data at 7 T will contribute towards the implementation of a comprehensive brain MRI examination at ultra-high field.
Assuntos
Mapeamento Encefálico , Neoplasias Encefálicas/patologia , Imagem Ecoplanar , Glioma/patologia , Interpretação de Imagem Assistida por Computador , Modelos Neurológicos , Feminino , Humanos , Masculino , Estatísticas não ParamétricasRESUMO
In this work, an eight-element by eight-element dual-tuned quadrature volume coil with a mix of capacitor terminated half-wavelength (λ/2) and quarter-wavelength (λ/4) microstrip resonators is proposed for multinuclear magnetic resonance imaging/spectroscopy studies at 7 T. In the proton channel, λ/2 microstrip resonators with capacitive terminations on both ends are employed for operation at higher frequency of 298.1 MHz; in the heteronucleus channel, capacitor-terminated λ/4 resonators, suitable for low frequency operations, are used to meet the low frequency requirement. This mixed structure design is particularly advantageous for high field heteronuclei magnetic resonance applications with large difference in Larmor frequency of the nuclei in question. The proposed design method makes it much easier to perform frequency tuning for heteronucleus channel using a variable capacitor with a practical capacitance range. As an example, a dual-tuned volume coil for (1)H/(13)C mouse spectroscopic imaging was proposed to demonstrate the feasibility of this method. The finite-difference time-domain method is first used to model this dual-tuned volume coil and calculate the B(1) field distributions at two frequencies. Transmission parameters (S(21)) measured between the proton channel and the carbon channel are -50 dB at 75 MHz and -35 dB at 298 MHz, showing the excellent isolation between the two channels at 7 T. The proton image and (13)C FIDCSI image of a corn oil phantom on the axial plane at 7 T demonstrate the feasibility of the proposed method. A preliminary proton image of a mouse on the sagittal plane is also acquired using the proposed dual-tuned volume coil at 7 T, illustrating a fairly uniform B(1) field and sufficient image coverage for imaging in mice.
Assuntos
Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Miniaturização , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Ventral and rostral regions of the brain are of emerging importance for the MRI characterization of early dementia, traumatic brain injury and epilepsy. Unfortunately, standard single-shot echo planar diffusion-weighted imaging of these regions at high fields is contaminated by severe imaging artifacts in the vicinity of air-tissue interfaces. To mitigate these artifacts and improve visualization of the temporal and frontal lobes at 7 T, we applied a reduced field-of-view strategy, enabled by outer volume suppression (OVS) with novel quadratic phase radiofrequency (RF) pulses, combined with partial Fourier and parallel imaging methods. The new acquisition greatly reduced the level of artifacts in six human subjects (including four patients with early symptoms of dementia).
Assuntos
Algoritmos , Encéfalo/patologia , Demência/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
The high-frequency transceiver array based on the microstrip transmission line design is a promising technique for ultrahigh field magnetic resonance imaging (MRI) signal excitation and reception. However, with the increase of radio-frequency (RF) channels, the size of the ground plane in each microstrip coil element is usually not sufficient to provide a perfect ground. Consequently, the transceiver array may suffer from cable resonance, lower Q-factors, and imaging quality degradations. In this paper, we present an approach to improving the performance of microstrip transceiver arrays by introducing RF shielding outside the microstrip array and the feeding coaxial cables. This improvement reduced interactions among cables, increased resonance stability, and Q-factors, and thus improved imaging quality. An experimental method was also introduced and utilized for quantitative measurement and evaluation of RF coil resonance stability or "cable resonance" behavior.
Assuntos
Eletrônica Médica/instrumentação , Processamento de Imagem Assistida por Computador/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Cabeça/anatomia & histologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de RádioRESUMO
Ultrahigh-field human spine RF transceiver coil arrays face daunting technical challenges in achieving large imaging coverage with sufficient B(1) penetration and sensitivity, and in attaining robust decoupling among coil elements. In this paper, human spine coil arrays for ultrahigh field were built and studied. Transceiver arrays with loop-shaped microstrip transmission line were designed, fabricated, and tested for 7-tesla (7T) MRI. With the proposed adjustable inductive decoupling technique, the isolation between adjacent coil elements is easily addressed. Preliminary results of human spine images acquired using the transceiver arrays demonstrate the feasibility of the design for ultrahigh-field MR applications and its robust performance for parallel imaging.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Coluna Vertebral/anatomia & histologia , Algoritmos , Desenho de Equipamento , Humanos , Imageamento por Ressonância Magnética/métodosRESUMO
Recent advancement for magnetic resonance imaging (MRI) involves the incorporation of higher-field strengths. Although imagers with higher magnetic field strengths were developed and tested in research labs, the direct application to patient MR studies have been extremely limited. Imaging at 7 Tesla (7T) affords advantages in signal-to-noise ratio and image contrast and resolution; however, these benefits can only be realized if the correct coils exist to capture the images. The objective of this study was to develop optimized high-resolution 7T MRI techniques using high sensitivity, specialized phased-array coils, for improved gray matter (GM) and white matter differentiation, in an effort to improve visualization of multiple sclerosis (MS) lesions in vivo. Twenty-three subjects were enrolled in this preliminary study, 17 with clinically definite MS (11 females, 6 males; mean age 43.4 years; range 22-64 years) and 6 healthy controls (2 females, 4 males; mean age 39.0 years; range 27-67 years). MR imaging of MS patients at 7T was demonstrated to be safe, well tolerated, and provided high-resolution anatomical images allowing visualization of structural abnormalities localized near or within the cortical layers. Clear involvement of the GM was observed with improved morphological detail in comparison to imaging at lower-field strength.
Assuntos
Encéfalo/patologia , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Esclerose Múltipla/patologia , Fibras Nervosas Mielinizadas/patologia , Transdutores , Adulto , Idoso , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Recently, great progress has been made in particularly in the imaging of cartilage and bone structure. Increased interest has focused on high-field (3 Tesla) imaging and more recently on ultra-high field (UHF) magnetic resonance imaging (MRI) at 7 T for in vivo imaging. Because the signal-to-noise ratio (SNR) scales linearly with field strength, a substantial increase in SNR is expected compared with lower field strengths. This gain in SNR can be used to increase spatial resolution or reduce imaging time. The goal of this review was to highlight recent developments and challenges in in vivo musculoskeletal (MSK) imaging using UHF-MRI at 7 T. One focus of this review is on the emerging methodology of quantitative MRI for the assessment of trabecular bone structure at the tibia, wrist, and knee. In particular for this application, susceptibility effects between the bone and bone marrow transitions that scale with field strength have to be considered. Another important MSK application is the characterization of knee cartilage morphology. The higher SNR provided by UHF-MRI is a potential advantage for visualizing, segmenting, and analyzing cartilage. Standard clinical MSK imaging relies heavily on T1, T2, and proton density weighted fast spin echo sequences. However, fast spin echo imaging has proven to be very challenging at higher fields because of very high specific absorption rates, using multiple pulses in a short time frame; thus the imaging protocols have to be adapted and gradient echo sequences may be more beneficial. Imaging of more central body parts such as the spine at 7 T is still in its infancy and dedicated coils have to be developed.
Assuntos
Doenças Ósseas/diagnóstico , Osso e Ossos/patologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/tendências , Músculo Esquelético/patologia , Doenças Musculares/diagnóstico , Humanos , Imageamento Tridimensional/tendênciasRESUMO
Susceptibility-weighted imaging (SWI) is a valuable technique for high-resolution imaging of brain vasculature that greatly benefits from the emergence of higher field strength MR scanners. Autocalibrating partially parallel imaging techniques can be employed to reduce lengthy acquisition times as long as the decrease in signal-to-noise ratio does not significantly affect the contrast between vessels and brain parenchyma. This study assessed the feasibility of a Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA)-based SWI technique at 7 T in both healthy volunteers and brain tumor patients. GRAPPA-based SWI allowed a twofold or more reduction in scan time without compromising vessel contrast and small vessel detection. Postprocessing parameters for the SWI needed to be modified for patients where the tumor causes high-frequency phase wrap artifacts but did not adversely affect vessel contrast. GRAPPA-based SWI at 7 T revealed regions of microvascularity, hemorrhage and calcification within heterogeneous brain tumors that may aid in characterizing active or necrotic tumor and monitoring treatment effects.
Assuntos
Algoritmos , Neoplasias Encefálicas/diagnóstico , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Humanos , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
The purpose of this work was to implement autocalibrating GRAPPA-based parallel imaging (PI) for in vivo high-resolution (HR) MRI of cartilage and trabecular bone micro-architecture at 7T and to evaluate its performance based on comparison of MR-derived morphology metrics between accelerated and conventional images and comparison of geometry factor measures between 3T and 7T. Using an eight channel coil array for trabecular MRI at the ankle, a higher maximum feasible acceleration (R) = 6 and lower geometry factor values than that at 3T were observed. The advantages of two-dimensional acceleration were also demonstrated. In knee cartilage and bone acquisitions, feasibility of PI with a dual-channel quadrature coil was investigated. Robust quantification of bone and cartilage metrics could be derived from accelerated ankle and knee acquisitions. PI can enhance the clinical feasibility of in vivo bone and cartilage HR-MRI for osteoporosis and osteoarthritis at 7T.
Assuntos
Articulação do Tornozelo/anatomia & histologia , Aumento da Imagem/métodos , Articulação do Joelho/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Sistema Musculoesquelético/anatomia & histologia , Artefatos , Osso e Ossos/anatomia & histologia , Cartilagem Articular/anatomia & histologia , Estudos de Viabilidade , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/instrumentaçãoRESUMO
The increased susceptibility effects and high signal-to-noise ratio at 7.0 T enable imaging of the brain using the phase of the magnetic resonance signal. This study describes and evaluates a robust method for calculating phase images from gradient-recalled echo (GRE) scans. The GRE scans were acquired at 7.0 T using an eight-channel receive coil at spatial resolutions up to 0.195 x 0.260 x 2.00 mm. The entire 7.0 T protocol took less than 10 min. Data were acquired from forty-seven subjects including clinical patients with multiple sclerosis (MS) or brain tumors. The phase images were post-processed using a fully automated phase unwrapping algorithm that combined the data from the different channels. The technique was used to create the first phase images of MS patients at any field strength and the first phase images of brain tumor patients above 1.5 T. The clinical images showed novel contrast in MS plaques and depicted microhemorrhages and abnormal vasculature in brain tumors with unsurpassed resolution and contrast.
Assuntos
Encéfalo/anatomia & histologia , Encéfalo/patologia , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Doenças do Sistema Nervoso/patologia , Adulto , Idoso , Algoritmos , Neoplasias Encefálicas/patologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/patologia , Hemorragia Cerebral/patologia , Veias Cerebrais/anatomia & histologia , Veias Cerebrais/patologia , Interpretação Estatística de Dados , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Valores de ReferênciaRESUMO
PURPOSE: To establish the feasibility of intracranial time-of-flight (TOF) MR angiography (MRA) at 7T using phased array coils and to compare its performance to 3T. MATERIALS AND METHODS: In an initial study, five normal volunteers were scanned at 7T and 3T using eight-channel coils and standard acquisition parameters from a clinical TOF protocol. In a second study three additional studies were performed at 7T and 3T using empirically optimized 7T parameters. Contrast-to-noise (CNR) values were measured for major vessel segments. RESULTS: All measurements documented CNR increases at 7T, with a mean increase of 83% in the initial study and 88% in the second study. The CNR values achieved using the latter protocol were similar to the values obtained in the initial study, despite the 42% reduction expected due to the higher spatial resolution. CNR in the smaller peripheral vessels was increased dramatically, resulting in excellent visualization at high resolution. CONCLUSION: TOF MRA at 7T demonstrated improved visualization of the intracranial vasculature, particularly the smaller peripheral vessels, and may benefit studies of small aneurysms, atherosclerosis, vasospasm, and vasculitis.