Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(12): 6336-6347, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36164972

RESUMO

Environmental oestrogens pose serious concerns for ecosystems through their effects on organismal survival and physiology. The gut microbiome is highly vulnerable to environmental influence, yet the effects of oestrogens on gut homeostasis are unknown because they are poorly studied in wildlife populations. To determine the influence of environmental oestrogens (i.e., xenoestrogens) on the diversity and abundance of gut microbiota, we randomly assigned 23 hatchling American alligators (Alligator mississippiensis) to three ecologically relevant treatments (control, low, and high oestrogen concentrations) for 10 weeks. We predicted that xenoestrogen exposure would decrease microbial diversity and abundance within the digestive tract and that this effect would be dose-dependent. Microbial samples were collected following diet treatments and microbial diversity was determined using 16S rRNA gene-sequencing. Individuals in oestrogen-treatment groups had decreased microbial diversity, but a greater relative abundance of operational taxonomic units than those in the control group. In addition, this effect was dose-dependent; as individuals were exposed to more oestrogen, their microbiome became less diverse, less rich and less even. Findings from this study suggest that oestrogen contamination can influence wildlife populations at the internal microbial-level, which may lead to future deleterious health effects.


Assuntos
Jacarés e Crocodilos , Microbioma Gastrointestinal , Microbiota , Animais , Jacarés e Crocodilos/genética , Estradiol/farmacologia , Estrogênios , RNA Ribossômico 16S/genética , Xenobióticos
2.
Arch Environ Contam Toxicol ; 77(1): 14-21, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30976886

RESUMO

Environmental contaminants, such as the trace element selenium (Se), are a continuing concern to species worldwide due to their potential pathophysiological effects, including their influence on the stress response mediated through glucocorticoids (GCs; stress hormones). Environmental concentrations of Se are increasing due to anthropogenic activities, including the incomplete combustion of coal and subsequent disposal of coal combustion wastes. However, most studies examining how Se affects GCs have been focused on lower trophic organisms. The objectives of this study were to investigate the effects of long-term Se exposure on traditionally used stress parameters and to identify which of these parameters best indicate Se accumulation in liver and kidney of the American alligator (Alligator mississippiensis), a top trophic carnivore found in the southeastern United States and known to inhabit Se-containing areas. Alligators were divided into three dietary treatments and fed prey spiked with 1000 or 2000 ppm of selenomethionine (SeMet) or deionized water (control treatment) for 7 weeks. Following the 7-week treatment protocol, blood and tissue samples were obtained to measure plasma corticosterone (CORT; the main crocodilian GC), tail scute CORT, the ratio of peripheral blood heterophils (H) to lymphocytes (L) as H/L ratio, and body condition. To evaluate which parameter best indicated Se accumulation in the liver and kidney, principal component and discriminant analyses were performed. The only parameter significantly correlated with liver and kidney Se concentrations was scute CORT. Our results suggest that measurement of CORT in tail scutes compared with plasma CORT, H/L ratios, and body condition is the best indicator of Se-exposure and accumulation in crocodilians.


Assuntos
Jacarés e Crocodilos/fisiologia , Poluentes Ambientais/toxicidade , Selênio/toxicidade , Animais , Corticosterona/análise , Corticosterona/sangue , Rim/metabolismo , Fígado/metabolismo , Selênio/farmacocinética , Selenometionina/toxicidade
3.
Arch Environ Contam Toxicol ; 75(1): 37-44, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29737374

RESUMO

Selenium (Se) is an essential nutrient which in excess causes toxicity. The disposal of incompletely combusted coal, which often is rich in Se, into aquatic settling basins is increasing the risk of Se exposure worldwide. However, very few studies have looked at the physiological effects of Se exposure on long-lived, top trophic vertebrates, such as the American alligator (Alligator mississippiensis). During a 7-week period, alligators were fed one of three dietary treatments: mice injected with deionized water or mice injected with water containing 1000 or 2000 ppm selenomethionine (SeMet). One week after the last feeding alligators were bled within 3 min of capture for plasma corticosterone (CORT). A few days later, all alligators were euthanized and whole blood and tail tissue were harvested to measure oxidative damage, an antioxidant-associated transcription factor, and antioxidant enzymes [glutathione peroxidase-1 (GPX1), superoxide dismutase-1 (SOD1), and SOD2] by Western blotting. There was a dose-dependent increase in baseline CORT levels in alligators administered SeMet. Except for blood SOD2 levels, SeMet treatment had no effect (p > 0.05 for all) on oxidative status: oxidative damage, GPX1, SOD1, and muscle SOD2 levels were similar among treatments. Our results illustrate that high levels of Se may act as a stressor to crocodilians. Future studies should investigate further the physiological effects of Se accumulation in long-lived, top-trophic vertebrates.


Assuntos
Jacarés e Crocodilos/sangue , Exposição Dietética/efeitos adversos , Enzimas/análise , Selenometionina/toxicidade , Aldeídos/análise , Animais , Antioxidantes/análise , Carvão Mineral , Corticosterona , Enzimas/sangue , Glutationa Peroxidase/análise , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Selênio/farmacocinética , Selenometionina/administração & dosagem , Cauda/química , Glutationa Peroxidase GPX1
4.
Behav Processes ; 201: 104729, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35934233

RESUMO

In complex terrestrial environments, chemical signals can be the most important sensory modality for locating conspecifics for potential mating opportunities, especially in spatially segregated populations or habitats. Organisms must evolve chemical signals to maximize the efficacy of conveying information, particularly in creating trails or mate-choice cues. Long-distance transmission of chemical signals may be an increasingly important management concern for small and fractured populations or potentially threatened species, such as gopher tortoises in the southeastern U.S. Mental gland secretions have been shown to have pheromonal function in gopher tortoises, suggesting a potential role as trail or marking pheromones, allowing males to track females or other males to find females. In this study, male gopher tortoises were given paired presentations of a negative control (distilled water) with serial dilutions (1:4, 1:20, 1:100, and 1:500) of male mental gland secretions. Male tortoises were able to discern treatment differences up to 1:20 diluted secretions, responding with an array of social behaviors (e.g. for the 1:20 dilution trial, carapace alignment and head bobbing occurred more frequently for the mental gland secretion relative to the control; p < 0.01). Multivariate principal components analysis yielded PC1 (including, approach, carapace alignment, head bobbing, tasting air, sniffing, and doubleback) that differed by treatment (p = 0.0007) and also was higher for the 1:20 diluted presentation relative to the 1:500 diluted presentation (p = 0.04). This study provides insight into gopher tortoise ecology, mate-choice, and the utility of environmentally diluted mental gland secretions in the external environment when seeking mating opportunities.


Assuntos
Geômis , Tartarugas , Animais , Ecossistema , Espécies em Perigo de Extinção , Feminino , Masculino , Feromônios/farmacologia , Tartarugas/fisiologia
5.
Behav Processes ; 183: 104314, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33421529

RESUMO

Chemical communication is important for mate choice, especially at long distances in fragmented populations. The gopher tortoise is a social species that is threatened in the southeast U.S. due to habitat fragmentation and decline. One consequence of habitat loss is reduced mating opportunities, yet chemical signalling in gopher tortoises is relatively under-studied. Here, we investigated chemoreception of tortoise discrimination of chin secretions, or mental gland (MG) secretions. To assess conspecific recognition of male MG secretions, we conducted two paired-choice experiments: one with a neutral odorant control (NC; distilled water) and one with a pungent odorant control (PC; acetone) vs. male MG secretions. Behaviours were defined a priori, and their durations were quantified relative to treatments. Each sex spent significantly more time with MG secretions vs. acetone control during the PC study (p= 0.001). Each sex also sniffed MG swabs more frequently in both studies (PC study: p=0.0003; NC study: p=0.001). A principal components analysis of behavioural durations from the PC study identified one component with a significant treatment effect performed to MG secretions (p=0.0003), including the behaviours sniffing, head bobbing, biting, and eating near a swab. Our study provides the first chemical-behavioural bioassay of MG secretions from male gopher tortoises, suggesting MG secretions may be a source of pheromones.


Assuntos
Geômis , Tartarugas , Animais , Ecossistema , Feminino , Masculino , Reprodução
6.
J Wildl Dis ; 52(3): 631-5, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27224213

RESUMO

: American alligators ( Alligator mississippiensis ) are one of the most studied crocodilian species in the world, yet blood and plasma biochemistry information is limited for juvenile alligators in their northern range, where individuals may be exposed to extreme abiotic and biotic stressors. We collected blood samples over a 2-yr period from 37 juvenile alligators in May, June, and July to establish reference intervals for 22 blood and plasma analytes. We observed no effect of either sex or blood collection time on any analyte investigated. However, our results indicate a significant correlation between a calculated body condition index and aspartate aminotransferase and creatine kinase. Glucose, total protein, and potassium varied significantly between sampling sessions. In addition, glucose and potassium were highly correlated between the two point-of-care devices used, although they were significantly lower with the i-STAT 1 CG8+ cartridge than with the Vetscan VS2 Avian/Reptile Rotor. The reference intervals presented herein should provide baseline data for evaluating wild juvenile alligators in the northern portion of their range.


Assuntos
Jacarés e Crocodilos/sangue , Animais , Animais Selvagens , Aspartato Aminotransferases/sangue , Glicemia , Proteínas Sanguíneas , Composição Corporal , Cálcio/sangue , Dióxido de Carbono/sangue , Creatina Quinase/sangue , Feminino , Hematócrito , Hemoglobinas , Masculino , Oxigênio/sangue , Fósforo/sangue , Potássio/sangue , Valores de Referência , Sódio/sangue , Ácido Úrico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA