RESUMO
Myosin and myosin-binding protein C are exquisitely organized into giant filamentous macromolecular complexes within cardiac muscle sarcomeres, yet these proteins must be continually replaced to maintain contractile fidelity. The overall hypothesis that myosin filament structure is dynamic and allows for the stochastic replacement of individual components was tested in vivo, using a combination of mass spectrometry- and fluorescence-based proteomic techniques. Adult mice were fed a diet that marked all newly synthesized proteins with a stable isotope-labeled amino acid. The abundance of unlabeled and labeled proteins was quantified by high-resolution mass spectrometry over an 8-week period. The rates of change in the abundance of these proteins were well described by analytical models in which protein synthesis defined stoichiometry and protein degradation was governed by the stochastic selection of individual molecules. To test whether the whole myosin filaments or the individual components were selected for replacement, cardiac muscle was chemically skinned to remove the cellular membrane and myosin filaments were solubilized with ionic solutions. The composition of the filamentous and soluble fractions was quantified by mass spectrometry, and filament depolymerization was visualized by real-time fluorescence microscopy. Myosin molecules were preferentially extracted from ends of the filaments in the presence of the ionic solutions, and there was only a slight bias in the abundance of unlabeled molecules toward the innermost region on the myosin filaments. These data demonstrate for the first time that the newly synthesized myosin and myosin-binding protein C molecules are randomly mixed into preexisting thick filaments in vivo and the rate of mixing may not be equivalent along the length of the thick filament. These data collectively support a new model of cardiac myosin filament structure, with the filaments being dynamic macromolecular assemblies that allow for replacement of their components, rather than rigid bodies.
Assuntos
Miosinas Cardíacas , Proteômica , Camundongos , Animais , Miosinas/química , Miosinas/metabolismo , Substâncias Macromoleculares , AminoácidosRESUMO
RATIONALE: Cardiac muscle cells are terminally differentiated after birth and must beat continually throughout one's lifetime. This mechanical process is driven by the sliding of actin-based thin filaments along myosin-based thick filaments, organized within sarcomeres. Despite costly energetic demand, the half-life of the proteins that comprise the cardiac thick filaments is â¼10 days, with individual molecules being replaced stochastically, by unknown mechanisms. OBJECTIVES: To allow for the stochastic replacement of molecules, we hypothesized that the structure of thick filaments must be highly dynamic in vivo. METHODS AND RESULTS: To test this hypothesis in adult mouse hearts, we replaced a fraction of the endogenous myosin regulatory light chain (RLC), a component of thick filaments, with GFP-labeled RLC by adeno-associated viral (AAV) transduction. The RLC-GFP was properly localized to the heads of the myosin molecules within thick filaments in ex vivo heart preparations and had no effect on heart size or actin filament siding in vitro. However, the localization of the RLC-GFP molecules was highly mobile, changing its position within the sarcomere on the minute timescale, when quantified by fluorescence recovery after photobleaching (FRAP) using multiphoton microscopy. Interestingly, RLC-GFP mobility was restricted to within the boundaries of single sarcomeres. When cardiomyocytes were lysed, the RLC-GFP remained strongly bound to myosin heavy chain, and the intact myosin molecules adopted a folded, compact configuration, when disassociated from the filaments at physiological ionic conditions. CONCLUSIONS: These data demonstrate that the structure of the thick filament is highly dynamic in the intact heart, with a rate of molecular exchange into and out of thick filaments that is â¼1500 times faster than that required for the replacement of molecules through protein synthesis or degradation.
Assuntos
Miócitos Cardíacos , Sarcômeros , Camundongos , Animais , Sarcômeros/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismoRESUMO
The polymerization of myosin molecules into thick filaments in muscle sarcomeres is essential for cardiac contractility, with the attenuation of interactions between the heads of myosin molecules within the filaments being proposed to result in hypercontractility, as observed in hypertrophic cardiomyopathy (HCM). However, experimental evidence demonstrates that the structure of these giant macromolecular complexes is highly dynamic, with molecules exchanging between the filaments and a pool of soluble molecules on the minute timescale. Therefore, we sought to test the hypothesis that the enhancement of interactions between the heads of myosin molecules within thick filaments limits the mobility of myosin by taking advantage of mavacamten, a small molecule approved for the treatment of HCM. Myosin molecules were labeled in vivo with a green fluorescent protein (GFP) and imaged in intact hearts using multiphoton microscopy. Treatment of the intact hearts with mavacamten resulted in an unexpected > 5-fold enhancement in GFP-myosin mobility within the sarcomere. In vitro biochemical assays suggested that mavacamten enhanced the mobility of GFP-myosin by increasing the solubility of myosin molecules, through the stabilization of a compact/folded conformation of the molecules, once disassociated from the thick filaments. These findings provide alternative insight into the mechanisms by which molecules exchange into and out of thick filaments and have implications for how mavacamten may affect cardiac contractility.
Assuntos
Benzilaminas , Miocárdio , Sarcômeros , Solubilidade , Uracila/análogos & derivados , Animais , Sarcômeros/metabolismo , Miocárdio/metabolismo , Camundongos , Miosinas/metabolismo , Dobramento de Proteína , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Cardiomiopatia Hipertrófica/metabolismo , Contração Miocárdica , Humanos , MasculinoRESUMO
Titin is a large filamentous protein that spans half a sarcomere, from Z-disk to M-line. The N2A region within the titin molecule exists between the proximal immunoglobulin (Ig) region and the PEVK region and protein-protein interactions involving this region are required for normal muscle function. The N2A region consists of four Ig domains (I80-I83) with a 105 amino acid linker region between I80 and I81 that has a helical nature. Using chemical stability measurements, we show that predicted differences between the adjacent Ig domains (I81-I83) correlate with experimentally determined differences in chemical stability and refolding kinetics. Our work further shows that I83 has the lowest ΔGunfolding , which is increased in the presence of calcium (pCa 4.3), indicating that Ca2+ plays a role in stabilizing this immunoglobulin domain. The characteristics of N2A's three Ig domains provide insight into the stability of the binding sites for proteins that interact with the N2A region. This work also provides insights into how Ca2+ might influence binding events involving N2A.