RESUMO
Quinoline-based scaffolds have been the mainstay of antimalarial drugs, including many artemisinin combination therapies (ACTs), over the history of modern drug development. Although much progress has been made in the search for novel antimalarial scaffolds, it may be that quinolines will remain useful, especially if very potent compounds from this class are discovered. We report here the results of a structure-activity relationship (SAR) study assessing potential unsymmetrical bisquinoline antiplasmodial drug candidates using in vitro activity against intact parasites in cell culture. Many unsymmetrical bisquinolines were found to be highly potent against both chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum parasites. Further work to develop such compounds could focus on minimizing toxicities in order to find suitable candidates for clinical evaluation.
Assuntos
Antimaláricos/farmacologia , Cloroquina/química , Cloroquina/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Cloroquina/análogos & derivados , Cloroquina/síntese química , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Humanos , Concentração Inibidora 50 , Quinolinas/química , Quinolinas/farmacologia , Relação Estrutura-AtividadeRESUMO
BACKGROUND: The potential benefits of long-acting injectable chemoprotection (LAI-C) against malaria have been recently recognized, prompting a call for suitable candidate drugs to help meet this need. On the basis of its known pharmacodynamic and pharmacokinetic profiles after oral dosing, ELQ-331, a prodrug of the parasite mitochondrial electron transport inhibitor ELQ-300, was selected for study of pharmacokinetics and efficacy as LAI-C in mice. METHODS: Four trials were conducted in which mice were injected with a single intramuscular dose of ELQ-331 or other ELQ-300 prodrugs in sesame oil with 1.2% benzyl alcohol; the ELQ-300 content of the doses ranged from 2.5 to 30 mg/kg. Initial blood stage challenges with Plasmodium yoelii were used to establish the model, but the definitive study measure of efficacy was outcome after sporozoite challenge with a luciferase-expressing P. yoelii, assessed by whole-body live animal imaging. Snapshot determinations of plasma ELQ-300 concentration ([ELQ-300]) were made after all prodrug injections; after the highest dose of ELQ-331 (equivalent to 30 mg/kg ELQ-300), both [ELQ-331] and [ELQ-300] were measured at a series of timepoints from 6 h to 5½ months after injection. RESULTS: A single intramuscular injection of ELQ-331 outperformed four other ELQ-300 prodrugs and, at a dose equivalent to 30 mg/kg ELQ-300, protected mice against challenge with P. yoelii sporozoites for at least 4½ months. Pharmacokinetic evaluation revealed rapid and essentially complete conversion of ELQ-331 to ELQ-300, a rapidly achieved (< 6 h) and sustained (4-5 months) effective plasma ELQ-300 concentration, maximum ELQ-300 concentrations far below the estimated threshold for toxicity, and a distinctive ELQ-300 concentration versus time profile. Pharmacokinetic modeling indicates a high-capacity, slow-exchange tissue compartment which serves to accumulate and then slowly redistribute ELQ-300 into blood, and this property facilitates an extremely long period during which ELQ-300 concentration is sustained above a minimum fully-protective threshold (60-80 nM). CONCLUSIONS: Extrapolation of these results to humans predicts that ELQ-331 should be capable of meeting and far-exceeding currently published duration-of-effect goals for anti-malarial LAI-C. Furthermore, the distinctive pharmacokinetic profile of ELQ-300 after treatment with ELQ-331 may facilitate durable protection and enable protection for far longer than 3 months. These findings suggest that ELQ-331 warrants consideration as a leading prototype for LAI-C.
Assuntos
Antimaláricos/efeitos adversos , Antimaláricos/farmacocinética , Plasmodium yoelii/efeitos dos fármacos , Quinolonas/efeitos adversos , Quinolonas/farmacocinética , Animais , Feminino , Camundongos , Pró-Fármacos/efeitos adversos , Pró-Fármacos/farmacocinéticaRESUMO
Building on our earlier work of attaching a chemosensitizer (reversal agent) to a known drug pharmacophore, we have now expanded the structure-activity relationship study to include simplified versions of the chemosensitizer. The change from two aromatic rings in this head group to a single ring does not appear to detrimentally affect the antimalarial activity of the compounds. Data from in vitro heme binding and ß-hematin inhibition assays suggest that the single aromatic RCQ compounds retain activities against Plasmodium falciparum similar to those of CQ, although other mechanisms of action may be relevant to their activities.
Assuntos
Antimaláricos/farmacologia , Cloroquina/análogos & derivados , Cloroquina/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos , Animais , Cloroquina/química , Descoberta de Drogas , Feminino , Heme/metabolismo , Hemeproteínas/antagonistas & inibidores , Hemeproteínas/biossíntese , Camundongos , Ligação Proteica , Relação Estrutura-AtividadeRESUMO
Antimalarial combination therapies play a crucial role in preventing the emergence of drug-resistant Plasmodium parasites. Although artemisinin-based combination therapies (ACTs) comprise the majority of these formulations, inhibitors of the mitochondrial cytochrome bc1 complex (cyt bc1) are among the few compounds that are effective for both acute antimalarial treatment and prophylaxis. There are two known sites for inhibition within cyt bc1: atovaquone (ATV) blocks the quinol oxidase (Qo) site of cyt bc1, while some members of the endochin-like quinolone (ELQ) family, including preclinical candidate ELQ-300, inhibit the quinone reductase (Qi) site and retain full potency against ATV-resistant Plasmodium falciparum strains with Qo site mutations. Here, we provide the first in vivo comparison of ATV, ELQ-300, and combination therapy consisting of ATV plus ELQ-300 (ATV:ELQ-300), using P. yoelii murine models of malaria. In our monotherapy assessments, we found that ATV functioned as a single-dose curative compound in suppressive tests whereas ELQ-300 demonstrated a unique cumulative dosing effect that successfully blocked recrudescence even in a high-parasitemia acute infection model. ATV:ELQ-300 therapy was highly synergistic, and the combination was curative with a single combined dose of 1 mg/kg of body weight. Compared to the ATV:proguanil (Malarone) formulation, ATV:ELQ-300 was more efficacious in multiday, acute infection models and was equally effective at blocking the emergence of ATV-resistant parasites. Ultimately, our data suggest that dual-site inhibition of cyt bc1 is a valuable strategy for antimalarial combination therapy and that Qi site inhibitors such as ELQ-300 represent valuable partner drugs for the clinically successful Qo site inhibitor ATV.
Assuntos
Antimaláricos/farmacologia , Atovaquona/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Malária Falciparum/tratamento farmacológico , Quinolonas/farmacologia , Animais , Combinação de Medicamentos , Quimioterapia Combinada/métodos , Feminino , Camundongos , Parasitemia/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Proguanil/farmacologiaRESUMO
Pactamycin is a bacteria-derived aminocyclitol antibiotic with a wide-range of biological activity. Its chemical structure and potent biological activities have made it an interesting lead compound for drug discovery and development. Despite its unusual chemical structure, many aspects of its formation in nature remain elusive. Using a combination of genetic inactivation and metabolic analysis, we investigated the tailoring processes of pactamycin biosynthesis in Streptomyces pactum. The results provide insights into the sequence of events during the tailoring steps of pactamycin biosynthesis and explain the unusual production of various pactamycin analogues by S.â pactum mutants. We also identified two new pactamycin analogues that have better selectivity indexes than pactamycin against malarial parasites.
Assuntos
Antibióticos Antineoplásicos/biossíntese , Pactamicina/análogos & derivados , Pactamicina/biossíntese , Streptomyces/metabolismo , Antibióticos Antineoplásicos/química , Conformação Molecular , Pactamicina/química , Streptomyces/genéticaRESUMO
ELQ-300 is a preclinical candidate that targets the liver and blood stages of Plasmodium falciparum, as well as the forms that are crucial to transmission of disease: gametocytes, zygotes, and ookinetes. A significant obstacle to the clinical development of ELQ-300 is related to its physicochemical properties. Its relatively poor aqueous solubility and high crystallinity limit absorption to the degree that only low blood concentrations can be achieved following oral dosing. While these low blood concentrations are sufficient for therapy, the levels are too low to establish an acceptable safety margin required by regulatory agencies for clinical development. One way to address the challenging physicochemical properties of ELQ-300 is through the development of prodrugs. Here, we profile ELQ-337, a bioreversible O-linked carbonate ester prodrug of the parent molecule. At the molar equivalent dose of 3 mg/kg of body weight, the delivery of ELQ-300 from ELQ-337 is enhanced by 3- to 4-fold, reaching a maximum concentration of drug in serum (C max) of 5.9 µM by 6 h after oral administration, and unlike ELQ-300 at any dose, ELQ-337 provides single-dose cures of patent malaria infections in mice at low-single-digit milligram per kilogram doses. Our findings show that the prodrug strategy represents a viable approach to overcome the physicochemical limitations of ELQ-300 to deliver the active drug to the bloodstream at concentrations sufficient for safety and toxicology studies, as well as achieving single-dose cures.
Assuntos
Antimaláricos/química , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Quinolonas/uso terapêutico , Animais , Cristalografia por Raios X , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Feminino , Camundongos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Pró-Fármacos/química , Quinolonas/químicaRESUMO
Two new cyclic depsipeptides, companeramides A (1) and B (2), have been isolated from the phylogenetically characterized cyanobacterial collection that yielded the previously reported cancer cell toxin coibamide A (collected from Coiba Island, Panama). The planar structures of the companeramides, which contain 3-amino-2-methyl-7-octynoic acid (Amoya), hydroxy isovaleric acid (Hiva), and eight α-amino acid units, were established by NMR spectroscopy and mass spectrometry. The absolute configuration of each companeramide was assigned using a combination of Marfey's methodology and chiral-phase HPLC analysis of complete and partial hydrolysis products compared to commercial and synthesized standards. Companeramides A (1) and B (2) showed high nanomolar in vitro antiplasmodial activity but were not overtly cytotoxic to four human cancer cell lines at the doses tested.
Assuntos
Antineoplásicos/isolamento & purificação , Cianobactérias/química , Depsipeptídeos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/farmacologia , Cromatografia Líquida de Alta Pressão , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , PanamáRESUMO
Preventing and delaying the emergence of drug resistance is an essential goal of antimalarial drug development. Monotherapy and highly mutable drug targets have each facilitated resistance, and both are undesirable in effective long-term strategies against multi-drug-resistant malaria. Haem remains an immutable and vulnerable target, because it is not parasite-encoded and its detoxification during haemoglobin degradation, critical to parasite survival, can be subverted by drug-haem interaction as in the case of quinolines and many other drugs. Here we describe a new antimalarial chemotype that combines the haem-targeting character of acridones, together with a chemosensitizing component that counteracts resistance to quinoline antimalarial drugs. Beyond the essential intrinsic characteristics common to deserving candidate antimalarials (high potency in vitro against pan-sensitive and multi-drug-resistant Plasmodium falciparum, efficacy and safety in vivo after oral administration, inexpensive synthesis and favourable physicochemical properties), our initial lead, T3.5 (3-chloro-6-(2-diethylamino-ethoxy)-10-(2-diethylamino-ethyl)-acridone), demonstrates unique synergistic properties. In addition to 'verapamil-like' chemosensitization to chloroquine and amodiaquine against quinoline-resistant parasites, T3.5 also results in an apparently mechanistically distinct synergism with quinine and with piperaquine. This synergy, evident in both quinoline-sensitive and quinoline-resistant parasites, has been demonstrated both in vitro and in vivo. In summary, this innovative acridone design merges intrinsic potency and resistance-counteracting functions in one molecule, and represents a new strategy to expand, enhance and sustain effective antimalarial drug combinations.
Assuntos
Acridonas/farmacologia , Antimaláricos/farmacologia , Descoberta de Drogas , Plasmodium falciparum/efeitos dos fármacos , Acridonas/análise , Acridonas/metabolismo , Animais , Antimaláricos/análise , Antimaláricos/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Sinergismo Farmacológico , Heme/antagonistas & inibidores , Heme/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação/genética , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Plasmodium yoelii/efeitos dos fármacos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Quinina/farmacologia , Quinolinas/farmacologia , Trofozoítos/metabolismo , Verapamil/farmacologiaRESUMO
Malaria has been a deadly enemy of mankind throughout history, affecting over 200 million people annually, along with approximately half a million deaths. Resistance to current therapies is of great concern, and there is a dire need for novel and well-tolerated antimalarials that operate by clinically unexploited mechanisms. We have previously reported that both tambjamines and prodiginines are highly potent novel antiplasmodial agents, but they required rigor optimizations to enhance the oral efficacy, safety, and physicochemical properties. Here, we launched a comprehensive structure-activity relationship study for B-ring-functionalized tambjamines and prodiginines with 54 novel analogues systematically designed and synthesized. A number of compounds exhibited remarkable antiplasmodial activities against asexual erythrocytic Plasmodium parasites, with improved safety and metabolic profiles. Notably, several prodiginines cured erythrocytic Plasmodium yoelii infections after oral 25 mg/kg × 4 days in a murine model and provided partial protection against liver stage Plasmodium berghei sporozoite-induced infection in mice.
RESUMO
ELQ-300 is a potent antimalarial drug with activity against blood, liver, and vector stages of the disease. A prodrug, ELQ-331, exhibits reduced crystallinity and improved in vivo efficacy in preclinical testing, and currently, it is in the developmental pipeline for once-a-week dosing for oral prophylaxis against malaria. Because of the high cost of developing a new drug for human use and the high risk of drug failure, it is prudent to have a back-up plan in place. Here we describe ELQ-596, a member of a new subseries of 3-biaryl-ELQs, with enhanced potency in vitro against multidrug-resistant Plasmodium falciparum parasites. ELQ-598, a prodrug of ELQ-596 with diminished crystallinity, is more effective vs murine malaria than its progenitor ELQ-331 by 4- to 10-fold, suggesting that correspondingly lower doses could be used to protect and cure humans of malaria. With a longer bloodstream half-life in mice compared to its progenitor, ELQ-596 highlights a novel series of next-generation ELQs with the potential for once-monthly dosing for protection against malaria infection. Advances in the preparation of 3-biaryl-ELQs are presented along with preliminary results from experiments to explore key structure-activity relationships for drug potency, selectivity, pharmacokinetics, and safety.
Assuntos
Antimaláricos , Plasmodium falciparum , Quinolonas , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/farmacocinética , Animais , Plasmodium falciparum/efeitos dos fármacos , Camundongos , Quinolonas/farmacologia , Quinolonas/química , Quinolonas/farmacocinética , Malária/tratamento farmacológico , Malária/prevenção & controle , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Feminino , Relação Estrutura-AtividadeRESUMO
Leishmaniasis is a neglected tropical disease that is estimated to afflict over 12 million people. Current drugs for leishmaniasis suffer from serious deficiencies, including toxicity, high cost, modest efficacy, primarily parenteral delivery, and emergence of widespread resistance. We have discovered and developed a natural product-inspired tambjamine chemotype, known to be effective against Plasmodium spp, as a novel class of antileishmanial agents. Herein, we report in vitro and in vivo antileishmanial activities, detailed structure-activity relationships, and metabolic/pharmacokinetic profiles of a large library of tambjamines. A number of tambjamines exhibited excellent potency against both Leishmania mexicana and Leishmania donovani parasites with good safety and metabolic profiles. Notably, tambjamine 110 offered excellent potency and provided partial protection to leishmania-infected mice at 40 and/or 60 mg/kg/10 days of oral treatment. This study presents the first account of antileishmanial activity in the tambjamine family and paves the way for the generation of new oral antileishmanial drugs.
Assuntos
Antiprotozoários , Leishmania donovani , Leishmania mexicana , Animais , Relação Estrutura-Atividade , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/uso terapêutico , Antiprotozoários/síntese química , Antiprotozoários/farmacocinética , Camundongos , Leishmania donovani/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Descoberta de Drogas , Humanos , Feminino , Leishmaniose/tratamento farmacológico , Camundongos Endogâmicos BALB CRESUMO
Our prior work on tricyclic acridones combined with a desire to minimize the tricyclic system led to an interest in antimalarial quinolones and a reexamination of endochin, an experimental antimalarial from the 1940's. In the present article, we show that endochin is unstable in the presence of murine, rat, and human microsomes which may explain its relatively poor antimalarial activity in mammalian systems. We also profile the structure-activity relationships of ≈ 30 endochin-like quinolone (ELQ) analogs and highlight features that are associated with enhanced metabolic stability, potent antiplasmodial activity against multidrug resistant strains of Plasmodium falciparum, and equal activity against an atovaquone-resistant clinical isolate. Our work also features an ELQ construct containing a polyethylene glycol carbonate pro-moiety that is highly efficacious by oral administration in a murine malaria model. These findings provide compelling evidence that development of ELQ therapeutics is feasible.
Assuntos
Antimaláricos/farmacologia , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos , Quinolonas/farmacologia , Animais , Antimaláricos/química , Antimaláricos/uso terapêutico , Modelos Animais de Doenças , Estabilidade de Medicamentos , Feminino , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Quinolonas/química , Quinolonas/uso terapêutico , Ratos , Relação Estrutura-AtividadeRESUMO
Highly efficient and straightforward synthetic routes toward the first total synthesis of 2-(p-hydroxybenzyl)-prodigiosins (2-5), isoheptylprodigiosin (6), and geometric isomers of tambjamine MYP1 ((E/Z)-7) have been developed. The crucial steps involved in these synthetic routes are the construction of methoxy-bipyrrole-carboxaldehydes (MBCs) and a 20-membered macrocyclic core and a regioselective demethylation of MBC analogues. These new synthetic routes enabled us to generate several natural prodiginines 24-27 in larger quantity. All of the synthesized natural products exhibited potent asexual blood-stage antiplasmodial activity at low nanomolar concentrations against a panel of Plasmodium falciparum parasites, with a great therapeutic index. Notably, prodiginines 6 and 24-27 provided curative in vivo efficacy against erythrocytic Plasmodium yoelii at 25 mg/kg × 4 days via oral route in a murine model. No overt clinical toxicity or behavioral change was observed in any mice treated with prodiginines and tambjamines.
Assuntos
Antimaláricos/uso terapêutico , Prodigiosina/análogos & derivados , Prodigiosina/uso terapêutico , Pirróis/uso terapêutico , Animais , Antimaláricos/síntese química , Antimaláricos/toxicidade , Feminino , Células Hep G2 , Humanos , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos , Prodigiosina/toxicidade , Pirróis/síntese química , Pirróis/toxicidade , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
Acridone derivatives, which have been shown to have in vitro and in vivo activity against Plasmodium spp, inhibit Toxoplasma gondii proliferation at picomolar concentrations. Using enzymatic assays, we show that acridones inhibit both T. gondii cytochrome bc1 and dihydroorotate dehydrogenase and identify acridones that bind preferentially to the Qi site of cytochrome bc1. We identify acridones that have efficacy in a murine model of systemic toxoplasmosis. Acridones have potent activity against T. gondii and represent a promising new class of preclinical compounds.
Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Acridonas , Animais , Camundongos , Toxoplasmose/tratamento farmacológicoRESUMO
The global impact of malaria remains staggering despite extensive efforts to eradicate the disease. With increasing drug resistance and the absence of a clinically available vaccine, there is an urgent need for novel, affordable, and safe drugs for prevention and treatment of malaria. Previously, we described a novel antimalarial acridone chemotype that is potent against both blood-stage and liver-stage malaria parasites. Here, we describe an optimization process that has produced a second-generation acridone series with significant improvements in efficacy, metabolic stability, pharmacokinetics, and safety profiles. These findings highlight the therapeutic potential of dual-stage targeting acridones as novel drug candidates for further preclinical development.
Assuntos
Acridonas/química , Antimaláricos/química , Acridonas/farmacocinética , Acridonas/farmacologia , Acridonas/uso terapêutico , Administração Oral , Animais , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Meia-Vida , Células Hep G2 , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Relação Estrutura-AtividadeRESUMO
A microwave-assisted, rapid and efficient method using boron trifluoride etherate (BF3.Et2O) for the synthesis of acridones, via an intramolecular acylation of N-phenylanthranilic acid derivatives, has been developed. The reaction proceeds under solvent-free conditions, tolerates a wide range of functional groups, and provides rapid access to a range of acridones in good to excellent yields. Several of the synthesized acridones exhibited potent antimalarial activities against CQ sensitive and multi-drug resistant (MDR) parasites.
RESUMO
Malaria remains one of the deadliest diseases in the world today. Novel chemoprophylactic and chemotherapeutic antimalarials are needed to support the renewed eradication agenda. We have discovered a novel antimalarial acridone chemotype with dual-stage activity against both liver-stage and blood-stage malaria. Several lead compounds generated from structural optimization of a large library of novel acridones exhibit efficacy in the following systems: (1) picomolar inhibition of in vitro Plasmodium falciparum blood-stage growth against multidrug-resistant parasites; (2) curative efficacy after oral administration in an erythrocytic Plasmodium yoelii murine malaria model; (3) prevention of in vitro Plasmodium berghei sporozoite-induced development in human hepatocytes; and (4) protection of in vivo P. berghei sporozoite-induced infection in mice. This study offers the first account of liver-stage antimalarial activity in an acridone chemotype. Details of the design, chemistry, structure-activity relationships, safety, metabolic/pharmacokinetic studies, and mechanistic investigation are presented herein.
Assuntos
Acridonas/química , Acridonas/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Descoberta de Drogas/métodos , Acridonas/uso terapêutico , Animais , Antimaláricos/uso terapêutico , Modelos Animais de Doenças , Células Hep G2 , Humanos , Malária/tratamento farmacológico , Camundongos , Plasmodium/classificação , Plasmodium/efeitos dos fármacos , Especificidade da Espécie , Relação Estrutura-AtividadeRESUMO
In this study, the effect of fluorine upon the heme-binding ability of the xanthone nucleus was investigated for 3,6-bis-(omega-N,N-diethylaminoamyloxy)-4,5-difluoroxanthone (F2C5). 2-Fluoro-1,3-dimethoxybenzene was prepared by a new, improved method and used to build up the xanthone nucleus. The interaction of F2C5 with heme was investigated by UV-vis, (1)H NMR, and (19)F NMR spectroscopy. For the first time, NMR studies for the heme-drug interactions are carried out at pH 5.0, physiological for the acidic food vacuole of the malaria parasite.
Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Heme/química , Xantonas/síntese química , Xantonas/farmacologia , Animais , Antimaláricos/química , Flúor/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Espectrofotometria , Relação Estrutura-Atividade , Xantonas/químicaRESUMO
ELQ-300 is a preclinical antimalarial drug candidate that is active against liver, blood, and transmission stages of Plasmodium falciparum. While ELQ-300 is highly effective when administered in a low multidose regimen, poor aqueous solubility and high crystallinity have hindered its clinical development. To overcome its challenging physiochemical properties, a number of bioreversible alkoxycarbonate ester prodrugs of ELQ-300 were synthesized. These bioreversible prodrugs are converted to ELQ-300 by host and parasite esterase action in the liver and bloodstream of the host. One such alkoxycarbonate prodrug, ELQ-331, is curative against Plasmodium yoelii with a single low dose of 3 mg/kg in a murine model of patent malaria infection. ELQ-331 is at least as fully protective as ELQ-300 in a murine malaria prophylaxis model when delivered 24 h before sporozoite inoculation at an oral dose of 1 mg/kg. Here, we show that ELQ-331 is a promising prodrug of ELQ-300 with improved physiochemical and metabolic properties and excellent potential for clinical formulation.
Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Pró-Fármacos/farmacologia , Quinolonas/química , Quinolonas/farmacologia , Animais , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Malária/tratamento farmacológico , Camundongos , Mitocôndrias/enzimologia , Estrutura Molecular , Plasmodium falciparum/enzimologia , Pró-Fármacos/químicaRESUMO
New treatments for tuberculosis infection are critical to combat the emergence of multidrug- and extensively drug-resistant Mycobacterium tuberculosis (Mtb). We report the characterization of a diphenylether-modified adamantyl 1,2-diamine that we refer to as TBL-140, which has a minimal inhibitory concentration (MIC99) of 1.2 µg/mL. TBL-140 is effective against drug-resistant Mtb and nonreplicating bacteria. In addition, TBL-140 eliminates expansion of Mtb in cell culture infection assays at its MIC. To define the mechanism of action of this compound, we performed a spontaneous mutant screen and biochemical assays. We determined that TBL-140 treatment affects the proton motive force (PMF) by perturbing the transmembrane potential (ΔΨ), consistent with a target in the electron transport chain (ETC). As a result, treated bacteria have reduced intracellular ATP levels. We show that TBL-140 exhibits greater metabolic stability than SQ109, a structurally similar compound in clinical trials for treatment of MDR-TB infections. Combined, these results suggest that TBL-140 should be investigated further to assess its potential as an improved therapeutic lead against Mtb.