Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Angew Chem Int Ed Engl ; : e202407147, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742485

RESUMO

Coinage metals Cu, Ag, and Au are essential for modern electronics and their recycling from waste materials is becoming increasingly important to guarantee the security of their supply. Designing new sustainable and selective procedures that would substitute currently used processes is crucial. Here, we describe an unprecedented approach for the sequential dissolution of single metals from Cu, Ag, and Au mixtures using biomass-derived ionic solvents and green oxidants. First, Cu can be selectively dissolved in the presence of Ag and Au with a choline chloride/urea/H2O2 mixture, followed by the dissolution of Ag in lactic acid/H2O2. Finally, the metallic Au, which is not soluble in either solution above, is dissolved in choline chloride/urea/Oxone. Subsequently, the metals were simply and quantitatively recovered from dissolutions, and the solvents were recycled and reused. The applicability of the developed approach was demonstrated by recovering metals from electronic waste substrates such as printed circuit boards, gold fingers, and solar panels. The dissolution reactions and selectivity were explored with different analytical techniques and DFT calculations. We anticipate our approach will pave a new way for the contemporary and sustainable recycling of multi-metal waste substrates.

2.
J Environ Manage ; 330: 117210, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608603

RESUMO

Adsorption is a relatively simple wastewater treatment method that has the potential to mitigate the impacts of pharmaceutical pollution. This requires the development of reusable adsorbents that can simultaneously remove pharmaceuticals of varying chemical structure and properties. Here, the adsorption potential of nanostructured wood-based adsorbents towards different pharmaceuticals in a multi-component system was investigated. The adsorbents in the form of macroporous cryogels were prepared by anchoring lignin nanoparticles (LNPs) to the nanocellulose network via electrostatic attraction. The naturally anionic LNPs were anchored to cationic cellulose nanofibrils (cCNF) and the cationic LNPs (cLNPs) were combined with anionic TEMPO-oxidized CNF (TCNF), producing two sets of nanocellulose-based cryogels that also differed in their overall surface charge density. The cryogels, prepared by freeze-drying, showed layered cellulosic sheets randomly decorated with spherical lignin on the surface. They exhibited varying selectivity and efficiency in removing pharmaceuticals with differing aromaticity, polarity and ionic characters. Their adsorption potential was also affected by the type (unmodified or cationic), amount and morphology of the lignin nanomaterials, as well as the pH of the pharmaceutical solution. Overall, the findings revealed that LNPs or cLNPs can act as functionalizing and crosslinking agents to nanocellulose-based cryogels. Despite the decrease in the overall positive surface charge, the addition of LNPs to the cCNF-based cryogels showed enhanced adsorption, not only towards the anionic aromatic pharmaceutical diclofenac but also towards the aromatic cationic metoprolol (MPL) and tramadol (TRA) and neutral aromatic carbamazepine. The addition of cLNPs to TCNF-based cryogels improved the adsorption of MPL and TRA despite the decrease in the net negative surface charge. The improved adsorption was attributed to modes of removal other than electrostatic attraction, and they could be π-π aromatic ring or hydrophobic interactions brought by the addition of LNPs or cLNPs. However, significant improvement was only found if the ratio of LNPs or cLNPs to nanocellulose was 0.6:1 or higher and with spherical lignin nanomaterials. As crosslinking agents, the LNPs or cLNPs affected the rheological behavior of the gels, and increased the firmness and decreased the water holding capacity of the corresponding cryogels. The resistance of the cryogels towards disintegration with exposure to water also improved with crosslinking, which eventually enabled the cryogels, especially the TCNF-based one, to be regenerated and reused for five cycles of adsorption-desorption experiment for the model pharmaceutical MPL. Thus, this study opened new opportunities to utilize LNPs in providing nanocellulose-based adsorbents with additional functional groups, which were otherwise often achieved by rigorous chemical modifications, at the same time, crosslinking the nanocellulose network.


Assuntos
Poluentes Ambientais , Nanopartículas , Poluentes Químicos da Água , Lignina/química , Criogéis/química , Celulose , Água , Adsorção , Poluentes Químicos da Água/química
3.
J Environ Sci (China) ; 126: 408-422, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503768

RESUMO

A series of organic compounds were successfully immobilized on an N-doped graphene quantum dot (N-GQD) to prepare a multifunctional organocatalyst for coupling reaction between CO2 and propylene oxide (PO). The simultaneous presence of halide ions in conjunction with acidic- and basic-functional groups on the surface of the nanoparticles makes them highly active for the production of propylene carbonate (PC). The effects of variables such as catalyst loading, reaction temperature, and structure of substituents are discussed. The proposed catalysts were characterized by different techniques, including Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy/energy dispersive X-ray microanalysis (FESEM/EDX), thermogravimetric analysis (TGA), elemental analysis, atomic force microscopy (AFM), and ultraviolet-visible (UV-Vis) spectroscopy. Under optimal reaction conditions, 3-bromopropionic acid (BPA) immobilized on N-GQD showed a remarkable activity, affording the highest yield of 98% at 140°C and 106 Pa without any co-catalyst or solvent. These new metal-free catalysts have the advantage of easy separation and reuse several times. Based on the experimental data, a plausible reaction mechanism is suggested, where the hydrogen bonding donors and halogen ion can activate the epoxide, and amine functional groups play a vital role in CO2 adsorption.


Assuntos
Carbono , Grafite , Nitrogênio , Dióxido de Carbono , Carbonatos , Compostos de Epóxi
4.
Anal Biochem ; 647: 114672, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35395223

RESUMO

Raman spectroscopy together with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS) was employed to characterize exomere- (<50 nm) and exosome-sized (50-80 nm) EVs isolated from human plasma by the novel on-line immunoaffinity chromatography - asymmetric flow field-flow fractionation method. CD9+, CD63+, and CD81+ EVs were selected to represent general EV subpopulations secreted into plasma, while CD61+ EVs represented the specific EV subset derived from platelets. Raman spectroscopy could distinguish EVs from non-EV particles, including apolipoprotein B-100-containing lipoproteins, signifying its potential in EV purity assessment. Moreover, platelet-derived (CD61+) EVs of both exomere and exosome sizes were discriminated from other EV subpopulations due to different biochemical compositions. Further investigations demonstrated composition differences between exomere- and exosome-sized EVs, confirming the applicability of Raman spectroscopy in distinguishing EVs, not only from different origins but also sizes. In addition, fatty acids that act as building blocks for lipids and membranes in EVs were studied by GCxGC-TOF-MS. The results achieved highlighted differences in EV fatty acid compositions in both esterified (membrane lipids) and non-esterified (free fatty acids) fractions, indicating possible differences in membrane structures, biological functions, and roles in cell-to-cell communications of EV subpopulations.


Assuntos
Exossomos , Vesículas Extracelulares , Fracionamento por Campo e Fluxo , Vesículas Extracelulares/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Análise Espectral Raman
5.
Chemphyschem ; 23(7): e202100635, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35130371

RESUMO

We have identified cellulose solvents, comprised of binary mixtures of molecular solvents and ionic liquids that rapidly dissolve cellulose to high concentration and show upper-critical solution temperature (UCST)-like thermodynamic behaviour - upon cooling and micro phase-separation to roughly spherical microparticle particle-gel mixtures. This is a result of an entropy-dominant process, controllable by changing temperature, with an overall exothermic regeneration step. However, the initial dissolution of cellulose in this system, from the majority cellulose I allomorph upon increasing temperature, is also exothermic. The mixtures essentially act as 'thermo-switchable' gels. Upon initial dissolution and cooling, micro-scaled spherical particles are formed, the formation onset and size of which are dependent on the presence of traces of water. Wide-angle X-ray scattering (WAXS) and 13 C cross-polarisation magic-angle spinning (CP-MAS) NMR spectroscopy have identified that the cellulose micro phase-separates with no remaining cellulose I allomorph and eventually forms a proportion of the cellulose II allomorph after water washing and drying. The rheological properties of these solutions demonstrate the possibility of a new type of cellulose processing, whereby morphology can be influenced by changing temperature.


Assuntos
Celulose , Líquidos Iônicos , Acetatos , Celulose/química , Dimetil Sulfóxido/química , Imidazóis/química , Líquidos Iônicos/química , Lactonas
6.
Angew Chem Int Ed Engl ; 61(14): e202117587, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35106899

RESUMO

Gold is a scarce element in the Earth's crust but indispensable in modern electronic devices. New, sustainable methods of gold recycling are essential to meet the growing eco-social demand of gold. Here, we describe a simple, inexpensive, and environmentally benign dissolution of gold under mild conditions. Gold dissolves quantitatively in ethanol using 2-mercaptobenzimidazole as a ligand in the presence of a catalytic amount of iodine. Mechanistically, the dissolution of gold begins when I2 oxidizes Au0 and forms a [AuI I2 ]- species, which undergoes subsequent ligand-exchange reactions and forms a stable bis-ligand AuI complex. H2 O2 oxidizes free iodide and regenerated I2 returns back to the catalytic cycle. Addition of a reductant to the reaction mixture precipitates gold quantitatively and partially regenerates the ligand. We anticipate our work will open a new pathway to more sustainable metal recycling with the utilization of just catalytic amounts of reagents and green solvents.

7.
Anal Chem ; 92(19): 13058-13065, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32893620

RESUMO

An automated on-line isolation and fractionation system including controlling software was developed for selected nanosized biomacromolecules from human plasma by on-line coupled immunoaffinity chromatography-asymmetric flow field-flow fractionation (IAC-AsFlFFF). The on-line system was versatile, only different monoclonal antibodies, anti-apolipoprotein B-100, anti-CD9, or anti-CD61, were immobilized on monolithic disk columns for isolation of lipoproteins and extracellular vesicles (EVs). The platelet-derived CD61-positive EVs and CD9-positive EVs, isolated by IAC, were further fractionated by AsFlFFF to their size-based subpopulations (e.g., exomeres and exosomes) for further analysis. Field-emission scanning electron microscopy elucidated the morphology of the subpopulations, and 20 free amino acids and glucose in EV subpopulations were identified and quantified in the ng/mL range using hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). The study revealed that there were significant differences between EV origin and size-based subpopulations. The on-line coupled IAC-AsFlFFF system was successfully programmed for reliable execution of 10 sequential isolation and fractionation cycles (37-80 min per cycle) with minimal operator involvement, minimal sample losses, and contamination. The relative standard deviations (RSD) between the cycles for human plasma samples were 0.84-6.6%.


Assuntos
Aminoácidos/sangue , Anticorpos Monoclonais/sangue , Automação , Cromatografia de Afinidade , Fracionamento por Campo e Fluxo , Glucose/análise , Técnicas de Imunoadsorção , Cromatografia Líquida , Humanos , Espectrometria de Massas em Tandem
8.
Nanotechnology ; 31(19): 195713, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31978899

RESUMO

Amorphous SiO2-Nb2O5 nanolaminates and mixture films were grown by atomic layer deposition. The films were grown at 300 °C from Nb(OC2H5)5, Si2(NHC2H5)6, and O3 to thicknesses ranging from 13 to 130 nm. The niobium to silicon atomic ratio was varied in the range of 0.11-7.20. After optimizing the composition, resistive switching properties could be observed in the form of characteristic current-voltage behavior. Switching parameters in the conventional regime were well defined only in a SiO2:Nb2O5 mixture at certain, optimized, composition with Nb:Si atomic ratio of 0.13, whereas low-reading voltage measurements allowed recording memory effects in a wider composition range.

9.
Chemistry ; 25(53): 12288-12293, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31336013

RESUMO

HNO3 -oxidized carbon nanotubes catalyze oxidative dehydrogenative (ODH) carbon-carbon bond formation between electron-rich (hetero)aryls with O2 as a terminal oxidant. The recyclable carbocatalytic method provides a convenient and an operationally easy synthetic protocol for accessing various benzofused homodimers, biaryls, triphenylenes, and related benzofused heteroaryls that are highly useful frameworks for material chemistry applications. Carbonyls/quinones are the catalytically active site of the carbocatalyst as indicated by model compounds and titration experiments. Further investigations of the reaction mechanism with a combination of experimental and DFT methods support the competing nature of acid-catalyzed and radical cationic ODHs, and indicate that both mechanisms operate with the current material.

10.
Small ; 14(27): e1800462, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29855134

RESUMO

The last decade has seen remarkable advances in the development of drug delivery systems as alternative to parenteral injection-based delivery of insulin. Neonatal Fc receptor (FcRn)-mediated transcytosis has been recently proposed as a strategy to increase the transport of drugs across the intestinal epithelium. FcRn-targeted nanoparticles (NPs) could hijack the FcRn transcytotic pathway and cross the epithelial cell layer. In this study, a novel nanoparticulate system for insulin delivery based on porous silicon NPs is proposed. After surface conjugation with albumin and loading with insulin, the NPs are encapsulated into a pH-responsive polymeric particle by nanoprecipitation. The developed NP formulation shows controlled size and homogeneous size distribution. Transmission electron microscopy (TEM) images show successful encapsulation of the NPs into pH-sensitive polymeric particles. No insulin release is detected at acidic conditions, but a controlled release profile is observed at intestinal pH. Toxicity studies show high compatibility of the NPs with intestinal cells. In vitro insulin permeation across the intestinal epithelium shows approximately fivefold increase when insulin is loaded into FcRn-targeted NPs. Overall, these FcRn-targeted NPs offer a toolbox in the development of targeted therapies for oral delivery of insulin.


Assuntos
Albuminas/química , Antígenos de Histocompatibilidade Classe I/química , Insulina/química , Nanopartículas/química , Polímeros/química , Receptores Fc/química , Silício/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Porosidade
11.
Angew Chem Int Ed Engl ; 57(52): 17104-17109, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30370970

RESUMO

Dissolution of elemental gold in organic solutions is a contemporary approach to lower the environmental burden associated with gold recycling. Herein, we describe fundamental studies on a highly efficient method for the dissolution of elemental Au that is based on DMF solutions containing pyridine-4-thiol (4-PSH) as a reactive ligand and hydrogen peroxide as an oxidant. Dissolution of Au proceeds through several elementary steps: isomerization of 4-PSH to pyridine-4-thione (4-PS), coordination with Au0 , and then oxidation of the Au0 thione species to AuI simultaneously with oxidation of free pyridine thione to elemental sulfur and further to sulfuric acid. The final dissolution product is a AuI complex bearing two 4-PS ligands and SO4 2- as a counterion. The ligand is crucial as it assists the oxidation process and stabilizes and solubilizes the formed Au cations.

12.
Small ; 13(33)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28714245

RESUMO

Ischemic heart disease is the leading cause of death globally. Severe myocardial ischemia results in a massive loss of myocytes and acute myocardial infarction, the endocardium being the most vulnerable region. At present, current therapeutic lines only ameliorate modestly the quality of life of these patients. Here, an engineered nanocarrier is reported for targeted drug delivery into the endocardial layer of the left ventricle for cardiac repair. Biodegradable porous silicon (PSi) nanoparticles are functionalized with atrial natriuretic peptide (ANP), which is known to be expressed predominantly in the endocardium of the failing heart. The ANP-PSi nanoparticles exhibit improved colloidal stability and enhanced cellular interactions with cardiomyocytes and non-myocytes with minimal toxicity. After confirmation of good retention of the radioisotope 111-Indium in relevant physiological buffers over 4 h, in vivo single-photon emission computed tomography (SPECT/CT) imaging and autoradiography demonstrate increased accumulation of ANP-PSi nanoparticles in the ischemic heart, particularly in the endocardial layer of the left ventricle. Moreover, ANP-PSi nanoparticles loaded with a novel cardioprotective small molecule attenuate hypertrophic signaling in the endocardium, demonstrating cardioprotective potential. These results provide unique insights into the development of nanotherapies targeted to the injured region of the myocardium.


Assuntos
Endocárdio/patologia , Nanopartículas/química , Transdução de Sinais , Animais , Sobrevivência Celular , Fenômenos Químicos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Hidrodinâmica , Hipertrofia , Masculino , Nanopartículas/ultraestrutura , Ratos Wistar , Propriedades de Superfície , Distribuição Tecidual
13.
Anal Biochem ; 514: 12-23, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27623434

RESUMO

Immunoaffinity procedure was developed for isolation of low density lipoprotein (LDL) from biological samples by using silica-derived immunoaffinity sorbent. Sorbent was prepared by immobilization of monoclonal anti-apoB-100 antibody onto macroporous silica particles, using carefully optimized binding chemistry. Binding capacity of the sorbent towards LDL was determined by batch extraction experiments with solutions of isolated LDL in phosphate-buffered saline, and found to be 8 mg LDL/g. The bound LDL fraction was readily released from the sorbent by elution with ammonia at pH 11.2. The total time needed for isolation procedure was less than 1 h, with LDL recoveries being essentially quantitative for samples containing less than 0.3 mg LDL/mL. With higher concentrations, recoveries were less favorable, most probably due to irreversible adsorption caused by LDL aggreggation. However, reusability studies with isolated LDL at concentration 0.2 mg/mL indicate that the developed immunoaffinity material may be used for multiple binding-release cycles, with minor losses in binding capacity. Finally, the sorbent was successfully applied to isolation of LDL from diluted plasma. Apart from its practical implications for LDL isolation, this study provides crucial insights into issues associated with LDL-sorbent interactions, and may be useful in future efforts directed to development of lipoprotein isolation approaches.


Assuntos
Apolipoproteína B-100 , Técnicas de Imunoadsorção , Lipoproteínas LDL/isolamento & purificação , Apolipoproteína B-100/imunologia , Calibragem , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Técnicas de Imunoadsorção/instrumentação , Lipoproteínas LDL/metabolismo , Compostos de Silício/química , Dióxido de Silício
14.
Int J Biol Macromol ; 266(Pt 1): 131168, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552694

RESUMO

Pharmaceuticals, designed for treating diseases, ironically endanger humans and aquatic ecosystems as pollutants. Adsorption-based wastewater treatment could address this problem, however, creating efficient adsorbents remains a challenge. Recent efforts have shifted towards sustainable bio-based adsorbents. Here, cryogels from lignin-containing cellulose nanofibrils (LCNF) and lignin nanoparticles (LNPs) were explored as pharmaceuticals adsorbents. An enzyme-based approach using laccase was used for crosslinking instead of fossil-based chemical modification. The impact of laccase treatment on LNPs alone produced surface-crosslinked water-insoluble LNPs with preserved morphology and a hemicellulose-rich, water-soluble LNP fraction. The water-insoluble LNPs displayed a significant increase in adsorption capacity, up to 140 % and 400 % for neutral and cationic drugs, respectively. The crosslinked cryogel prepared by one-pot incubation of LNPs, LCNF and laccase showed significantly higher adsorption capacities for various pharmaceuticals in a multi-component system than pure LCNF or unmodified cryogels. The crosslinking minimized the leaching of LNPs in water, signifying enhanced binding between LNPs and LCNF. In real wastewater, the laccase-modified cryogel displayed 8-44 % removal for cationic pharmaceuticals. Overall, laccase treatment facilitated the production of bio-based adsorbents by improving the deposition of LNPs to LCNF. Finally, this work introduces a sustainable approach for engineering adsorbents, while aligning with global sustainability goals.


Assuntos
Celulose , Criogéis , Lacase , Lignina , Nanopartículas , Poluentes Químicos da Água , Adsorção , Criogéis/química , Lignina/química , Lacase/química , Celulose/química , Nanopartículas/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Preparações Farmacêuticas/química , Águas Residuárias/química , Reagentes de Ligações Cruzadas/química
15.
ACS Omega ; 9(2): 2220-2233, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250424

RESUMO

A series of monometallic Ag(I) and Cu(I) halide complexes bearing 2-(diphenylphosphino)pyridine (PyrPhos, L) as a ligand were synthesized and spectroscopically characterized. The structure of most of the derivatives was unambiguously established by X-ray diffraction analysis, revealing the formation of mono-, di-, and tetranuclear complexes having general formulas MXL3 (M = Cu, X = Cl, Br; M = Ag, X = Cl, Br, I), Ag2X2L3 (X = Cl, Br), and Ag4X4L4 (X = Cl, Br, I). The Ag(I) species were compared to the corresponding Cu(I) analogues from a structural point of view. The formation of Cu(I)/Ag(I) heterobimetallic complexes MM'X2L3 (M/M' = Cu, Ag; X = Cl, Br, I) was also investigated. The X-ray structure of the bromo-derivatives revealed the formation of two possible MM'Br2L3 complexes with Cu/Ag ratios, respectively, of 7:1 and 1:7. The ratio between Cu and Ag was studied by scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX) measurements. The structure of the binuclear homo- and heterometallic derivatives was investigated using density functional theory (DFT) calculations, revealing the tendency of the PyrPhos ligands not to maintain the bridging motif in the presence of Ag(I) as the metal center.

16.
Adv Healthc Mater ; 13(15): e2302074, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38499190

RESUMO

Atherosclerosis still represents a major driver of cardiovascular diseases worldwide. Together with accumulation of lipids in the plaque, inflammation is recognized as one of the key players in the formation and development of atherosclerotic plaque. Systemic anti-inflammatory treatments are successful in reducing the disease burden, but are correlated with severe side effects, underlining the need for targeted formulations. In this work, curcumin is chosen as the anti-inflammatory payload model and further loaded in lignin-based nanoparticles (NPs). The NPs are then coated with a tannic acid (TA)- Fe (III) complex and further cloaked with fragments derived from platelet cell membrane, yielding NPs with homogenous size. The two coatings increase the interaction between the NPs and cells, both endothelial and macrophages, in steady state or inflamed status. Furthermore, NPs are cytocompatible toward endothelial, smooth muscle and immune cells, while not inducing immune activation. The anti-inflammatory efficacy is demonstrated in endothelial cells by real-time quantitative polymerase chain reaction and ELISA assay where curcumin-loaded NPs decrease the expression of Nf-κb, TGF-ß1, IL-6, and IL-1ß in lipopolysaccharide-inflamed cells. Overall, due to the increase in the cell-NP interactions and the anti-inflammatory efficacy, these NPs represent potential candidates for the targeted anti-inflammatory treatment of atherosclerosis.


Assuntos
Anti-Inflamatórios , Aterosclerose , Plaquetas , Curcumina , Nanopartículas , Curcumina/química , Curcumina/farmacologia , Aterosclerose/tratamento farmacológico , Humanos , Nanopartículas/química , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Taninos/química , Taninos/farmacologia , Células RAW 264.7 , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
17.
Adv Healthc Mater ; 12(6): e2202672, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459471

RESUMO

The oral route is highly desirable for colorectal cancer (CRC) treatment because it allows concentrating the drug in the colon and achieving a localized effect. However, orally administered drugs are often metabolized in the liver, resulting in reduced efficacy and the need for higher doses. Nanoparticle-based drug delivery systems can be engineered to prevent the diffusion of the drug in the stomach, addressing the release at the target site, and enhancing the efficacy of the delivered drug. Here, an orally administrable galunisertib delivery system is developed with gelatin-covered diatomite nanoparticles targeting the ligand 1-cell adhesion molecule (L1-CAM) on metastatic cells, and further encapsulated in an enteric matrix by microfluidics. The gastro-resistant polymer protects the nanoparticles from the action of the digestive enzymes and allows for a sustained release of galunisertib at the intestinal pH. The efficacy of antibody-antigen interactions to drive the internalization of nanoparticles in the targeted cells is investigated in CRC cells expressing abnormal (SW620) or basal levels (Caco-2, HT29-MTX) of L1-CAM. The combination of local drug release and active targeting enhances the effect of the delivered galunisertib, which inhibits the migration of the SW620 cells with greater efficiency compared to the free drug.


Assuntos
Neoplasias do Colo , Nanopartículas , Humanos , Células CACO-2 , Microfluídica/métodos , Neoplasias do Colo/tratamento farmacológico , Nanopartículas/química , Preparações Farmacêuticas , Estômago , Sistemas de Liberação de Medicamentos/métodos
18.
Langmuir ; 28(28): 10573-83, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22671967

RESUMO

Oxidation is the most commonly used method of passivating porous silicon (PSi) surfaces against unwanted reactions with guest molecules and temporal changes during storage or use. In the present study, several oxidation methods were compared in order to find optimal methods able to generate inert surfaces free of reactive hydrides but would cause minimal changes in the pore structure of PSi. The studied methods included thermal oxidations, liquid-phase oxidations, annealings, and their combinations. The surface-oxidized samples were studied by Fourier transform infrared spectroscopy, isothermal titration microcalorimetry, nitrogen sorption, ellipsometry, X-ray diffraction, electron paramagnetic resonance spectroscopy, and scanning electron microscopy imaging. Treatment at high temperature was found to have two advantages. First, it enables the generation of surfaces free of hydrides, which is not possible at low temperatures in a liquid or a gas phase. Second, it allows the silicon framework to partially accommodate a volume expansion because of oxidation, whereas at low temperature the volume expansion significantly consumes the free pore volume. The most promising methods were further optimized to minimize the negative effects on the pore structure. Simple thermal oxidation at 700 °C was found to be an effective oxidation method although it causes a large decrease in the pore volume. A novel combination of thermal oxidation, annealing, and liquid-phase oxidation was also effective and caused a smaller decrease in the pore volume with no significant change in the pore diameter but was more complicated to perform. Both methods produced surfaces that were not found to react with a model drug cinnarizine in isothermal titration microcalorimetry experiments. The study enables a reasonable choice of oxidation method for PSi applications.


Assuntos
Silício/química , Estrutura Molecular , Oxirredução , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura
19.
Nanotechnology ; 23(12): 125707, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22414989

RESUMO

Nanotubular titanium dioxide thin films were prepared by anodization of titanium metal films evaporated on indium tin oxide (ITO) coated glass. A facile method to enhance the adhesion of the titanium film to the ITO glass was developed. An optimum thickness of 550 nm for the evaporated titanium was found to keep the film adhered to ITO during the anodization. The films were further modified by growing amorphous titania, alumina and tantala thin films conformally in the nanotubes by atomic layer deposition (ALD). The optical, electrical and physical properties of the different structures were compared. It was shown that even 5 nm thin layers can modify the properties of the nanotubular titanium dioxide films.

20.
Dalton Trans ; 51(48): 18593-18602, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36444942

RESUMO

In this paper we present laboratory-scale X-ray absorption spectroscopy applied to the research of nanometer-scale thin films. We demonstrate the Cu K edge X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) of CuI and CuO thin films grown with atomic layer deposition. Film thicknesses in the investigated samples ranged from 12 to 248 nm. Even from the thinnest films, XANES spectra can be obtained in 5-20 minutes and EXAFS in 1-4 days. In order to prove the capability of laboratory-based XAS for in situ measurements on thin films, we demonstrate an experiment on in situ oxidation of a 248 nm thick CuI film at a temperature of 240 °C. These methods have important implications for novel and enhanced possibilities for inorganic thin film research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA