Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 45(W1): W422-W428, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28402475

RESUMO

ReFOLD is a novel hybrid refinement server with integrated high performance global and local Accuracy Self Estimates (ASEs). The server attempts to identify and to fix likely errors in user supplied 3D models of proteins via successive rounds of refinement. The server is unique in providing output for multiple alternative refined models in a way that allows users to quickly visualize the key residue locations, which are likely to have been improved. This is important, as global refinement of a full chain model may not always be possible, whereas local regions, or individual domains, can often be much improved. Thus, users may easily compare the specific regions of the alternative refined models in which they are most interested e.g. key interaction sites or domains. ReFOLD was used to generate hundreds of alternative refined models for the CASP12 experiment, boosting our group's performance in the main tertiary structure prediction category. Our successful refinement of initial server models combined with our built-in ASEs were instrumental to our second place ranking on Template Based Modeling (TBM) and Free Modeling (FM)/TBM targets. The ReFOLD server is freely available at: http://www.reading.ac.uk/bioinf/ReFOLD/.


Assuntos
Modelos Moleculares , Dobramento de Proteína , Proteínas/química , Interface Usuário-Computador , Animais , Benchmarking , Humanos , Internet , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Termodinâmica
2.
Proteins ; 86 Suppl 1: 335-344, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28748648

RESUMO

Our aim in CASP12 was to improve our Template-Based Modeling (TBM) methods through better model selection, accuracy self-estimate (ASE) scores and refinement. To meet this aim, we developed two new automated methods, which we used to score, rank, and improve upon the provided server models. Firstly, the ModFOLD6_rank method, for improved global Quality Assessment (QA), model ranking and the detection of local errors. Secondly, the ReFOLD method for fixing errors through iterative QA guided refinement. For our automated predictions we developed the IntFOLD4-TS protocol, which integrates the ModFOLD6_rank method for scoring the multiple-template models that were generated using a number of alternative sequence-structure alignments. Overall, our selection of top models and ASE scores using ModFOLD6_rank was an improvement on our previous approaches. In addition, it was worthwhile attempting to repair the detected errors in the top selected models using ReFOLD, which gave us an overall gain in performance. According to the assessors' formula, the IntFOLD4 server ranked 3rd/5th (average Z-score > 0.0/-2.0) on the server only targets, and our manual predictions (McGuffin group) ranked 1st/2nd (average Z-score > -2.0/0.0) compared to all other groups.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Proteínas/química , Software , Bases de Dados de Proteínas , Humanos , Alinhamento de Sequência , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA