Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 147(16)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843528

RESUMO

The Hippo-Yap pathway regulates multiple cellular processes in response to mechanical and other stimuli. In Drosophila, the polarity protein Lethal (2) giant larvae [L(2)gl], negatively regulates Hippo-mediated transcriptional output. However, in vertebrates, little is known about its homolog Llgl1. Here, we define a novel role for vertebrate Llgl1 in regulating Yap stability in cardiomyocytes, which impacts heart development. In contrast to the role of Drosophila L(2)gl, Llgl1 depletion in cultured rat cardiomyocytes decreased Yap protein levels and blunted target gene transcription without affecting Yap transcript abundance. Llgl1 depletion in zebrafish resulted in larger and dysmorphic cardiomyocytes, pericardial effusion, impaired blood flow and aberrant valvulogenesis. Cardiomyocyte Yap protein levels were decreased in llgl1 morphants, whereas Notch, which is regulated by hemodynamic forces and participates in valvulogenesis, was more broadly activated. Consistent with the role of Llgl1 in regulating Yap stability, cardiomyocyte-specific overexpression of Yap in Llgl1-depleted embryos ameliorated pericardial effusion and restored blood flow velocity. Altogether, our data reveal that vertebrate Llgl1 is crucial for Yap stability in cardiomyocytes and its absence impairs cardiac development.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Coração/embriologia , Miócitos Cardíacos/metabolismo , Transativadores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Proteínas de Ciclo Celular/genética , Estabilidade Proteica , Transativadores/genética , Proteínas de Sinalização YAP , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
J Mol Cell Cardiol ; 161: 62-74, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34343540

RESUMO

Neonatal heart regeneration depends on proliferation of pre-existing cardiomyocytes, yet the mechanisms driving regeneration and cardiomyocyte proliferation are not comprehensively understood. We recently reported that the anti-inflammatory cytokine, interleukin 13 (IL13), promotes neonatal cardiac regeneration; however, the signaling pathway and cell types mediating this regenerative response remain unknown. Here, we hypothesized that expression of the type II heterodimer receptor for IL13, comprised of IL4Rα and IL13Rα1, expressed directly on cardiomyocytes mediates cardiomyocyte cell cycle and heart regeneration in neonatal mice. Our data demonstrate that indeed global deletion of one critical subunit of the type II receptor, IL4Rα (IL4Rα-/-), decreases cardiomyocyte proliferation during early postnatal development and significantly impairs cardiac regeneration following injury in neonatal mice. While multiple myocardial cell types express IL4Rα, we demonstrate that IL4Rα deletion specifically in cardiomyocytes mediates cell cycle activity and neonatal cardiac regeneration. This demonstrates for the first time a functional role for IL4Rα signaling directly on cardiomyocytes in vivo. Reciprocally, we examined the therapeutic benefit of activating the IL4Rα receptor in non-regenerative hearts via IL13 administration. Following myocardial infarction, administration of IL13 reduced scar size and promoted cardiomyocyte DNA synthesis and karyokinesis, but not complete cytokinesis, in 6-day old non-regenerative mice. Our data demonstrate a novel role for IL4Rα signaling directly on cardiomyocytes during heart regeneration and suggest the potential for type II receptor activation as one potential therapeutic target for promoting myocardial repair.


Assuntos
Coração/fisiologia , Miócitos Cardíacos/citologia , Receptores de Superfície Celular/metabolismo , Animais , Animais Recém-Nascidos , Ciclo Celular , Células Cultivadas , Feminino , Coração/crescimento & desenvolvimento , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos , Receptores de Superfície Celular/genética , Regeneração , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
3.
Am J Physiol Heart Circ Physiol ; 316(1): H24-H34, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339498

RESUMO

There is great interest in identifying signaling mechanisms by which cardiomyocytes (CMs) can enter the cell cycle and promote endogenous cardiac repair. We have previously demonstrated that IL-13 stimulated cell cycle activity of neonatal CMs in vitro. However, the signaling events that occur downstream of IL-13 in CMs and the role of IL-13 in CM proliferation and regeneration in vivo have not been explored. Here, we tested the role of IL-13 in promoting neonatal CM cell cycle activity and heart regeneration in vivo and investigated the signaling pathway(s) downstream of IL-13 specifically in CMs. Compared with control, CMs from neonatal IL-13 knockout (IL-13-/-) mice showed decreased proliferative markers and coincident upregulation of the hypertrophic marker brain natriuretic peptide ( Nppb) and increased CM nuclear size. After apical resection in anesthetized newborn mice, heart regeneration was significantly impaired in IL-13-/- mice compared with wild-type mice. Administration of recombinant IL-13 reversed these phenotypes by increasing CM proliferation markers and decreasing Nppb expression. RNA sequencing on primary neonatal CMs treated with IL-13 revealed activation of gene networks regulated by ERK1/2 and Akt. Western blot confirmed strong phosphorylation of ERK1/2 and Akt in both neonatal and adult cultured CMs in response to IL-13. Our data demonstrated a role for endogenous IL-13 in neonatal CM cell cycle and heart regeneration. ERK1/2 and Akt signaling are important pathways known to promote CM proliferation and protect against apoptosis, respectively; thus, targeting IL-13 transmembrane receptor signaling or administering recombinant IL-13 may be therapeutic approaches for activating proregenerative and survival pathways in the heart. NEW & NOTEWORTHY Here, we demonstrate, for the first time, that IL-13 is involved in neonatal cardiomyocyte cell cycle activity and heart regeneration in vivo. Prior work has shown that IL-13 promotes cardiomyocyte cell cycle activity in vitro; however, the signaling pathways were unknown. We used RNA sequencing to identify the signaling pathways activated downstream of IL-13 in cardiomyocytes and found that ERK1/2 and Akt signaling was activated in response to IL-13.


Assuntos
Ciclo Celular , Coração/fisiologia , Interleucina-13/metabolismo , Miócitos Cardíacos/metabolismo , Regeneração , Animais , Proliferação de Células , Células Cultivadas , Feminino , Interleucina-13/genética , Interleucina-13/farmacologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA