Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant Physiol ; 194(4): 2136-2148, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37987565

RESUMO

In plants, de novo DNA methylation is guided by 24-nt short interfering (si)RNAs in a process called RNA-directed DNA methylation (RdDM). Primarily targeted at transposons, RdDM causes transcriptional silencing and can indirectly influence expression of neighboring genes. During reproduction, a small number of siRNA loci are dramatically upregulated in the maternally derived seed coat, suggesting that RdDM might have a special function during reproduction. However, the developmental consequence of RdDM has been difficult to dissect because disruption of RdDM does not result in overt phenotypes in Arabidopsis (Arabidopsis thaliana), where the pathway has been most thoroughly studied. In contrast, Brassica rapa mutants lacking RdDM have a severe seed production defect, which is determined by the maternal sporophytic genotype. To explore the factors that underlie the different phenotypes of these species, we produced RdDM mutations in 3 additional members of the Brassicaceae family: Camelina sativa, Capsella rubella, and Capsella grandiflora. Among these 3 species, only mutations in the obligate outcrosser, C. grandiflora, displayed a seed production defect similar to Brassica rapa mutants, suggesting that mating system is a key determinant for reproductive phenotypes in RdDM mutants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Metilação de DNA/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Interferente Pequeno/genética , RNA de Cadeia Dupla , Fenótipo , Sementes/genética , Sementes/metabolismo , Reprodução , RNA de Plantas/genética , RNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant J ; 111(3): 748-755, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35635763

RESUMO

All eukaryotes possess three DNA-dependent RNA polymerases, Pols I-III, while land plants possess two additional polymerases, Pol IV and Pol V. Derived through duplication of Pol II subunits, Pol IV produces 24-nt short interfering RNAs that interact with Pol V transcripts to target de novo DNA methylation and silence transcription of transposons. Members of the grass family encode additional duplicated subunits of Pol IV and V, raising questions regarding the function of each paralog. In this study, we identify a null allele of the putative Pol IV second subunit, NRPD2, and demonstrate that NRPD2 is the sole subunit functioning with NRPD1 in small RNA production and CHH methylation in leaves. Homozygous nrpd2 mutants have neither gametophytic defects nor embryo lethality, although adult plants are dwarf and sterile.


Assuntos
Proteínas de Arabidopsis , Oryza , Alelos , Proteínas de Arabidopsis/metabolismo , Metilação de DNA/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Oryza/metabolismo , RNA Polimerase II/metabolismo , RNA de Plantas/genética , RNA Interferente Pequeno/genética
3.
Proc Natl Acad Sci U S A ; 117(26): 15305-15315, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541052

RESUMO

Small RNAs are abundant in plant reproductive tissues, especially 24-nucleotide (nt) small interfering RNAs (siRNAs). Most 24-nt siRNAs are dependent on RNA Pol IV and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and establish DNA methylation at thousands of genomic loci in a process called RNA-directed DNA methylation (RdDM). In Brassica rapa, RdDM is required in the maternal sporophyte for successful seed development. Here, we demonstrate that a small number of siRNA loci account for over 90% of siRNA expression during B. rapa seed development. These loci exhibit unique characteristics with regard to their copy number and association with genomic features, but they resemble canonical 24-nt siRNA loci in their dependence on RNA Pol IV/RDR2 and role in RdDM. These loci are expressed in ovules before fertilization and in the seed coat, embryo, and endosperm following fertilization. We observed a similar pattern of 24-nt siRNA expression in diverse angiosperms despite rapid sequence evolution at siren loci. In the endosperm, siren siRNAs show a marked maternal bias, and siren expression in maternal sporophytic tissues is required for siren siRNA accumulation. Together, these results demonstrate that seed development occurs under the influence of abundant maternal siRNAs that might be transported to, and function in, filial tissues.


Assuntos
Brassica rapa/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , RNA de Plantas , Sementes/crescimento & desenvolvimento , Alelos , Arabidopsis/metabolismo , Brassica rapa/genética , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Interferente Pequeno , Sementes/genética , Sementes/metabolismo
4.
Plant J ; 94(4): 575-582, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29569777

RESUMO

Small RNAs trigger repressive DNA methylation at thousands of transposable elements in a process called RNA-directed DNA methylation (RdDM). The molecular mechanism of RdDM is well characterized in Arabidopsis, yet the biological function remains unclear, as loss of RdDM in Arabidopsis causes no overt defects, even after generations of inbreeding. It is known that 24 nucleotide Pol IV-dependent siRNAs, the hallmark of RdDM, are abundant in flowers and developing seeds, indicating that RdDM might be important during reproduction. Here we show that, unlike Arabidopsis, mutations in the Pol IV-dependent small RNA pathway cause severe and specific reproductive defects in Brassica rapa. High rates of abortion occur when seeds have RdDM mutant mothers, but not when they have mutant fathers. Although abortion occurs after fertilization, RdDM function is required in maternal somatic tissue, not in the female gametophyte or the developing zygote, suggesting that siRNAs from the maternal soma might function in filial tissues. We propose that recently outbreeding species such as B. rapa are key to understanding the role of RdDM during plant reproduction.


Assuntos
Brassica rapa/genética , Metilação de DNA , RNA Interferente Pequeno/genética , Sementes/genética , Brassica rapa/embriologia , Brassica rapa/enzimologia , Brassica rapa/fisiologia , Elementos de DNA Transponíveis/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Diploide , Genótipo , Mutação , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Reprodução , Sementes/embriologia , Sementes/enzimologia , Sementes/fisiologia
5.
Mol Biol Evol ; 32(7): 1788-99, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25767205

RESUMO

Small RNA-mediated chromatin modification is a conserved feature of eukaryotes. In flowering plants, the short interfering (si)RNAs that direct transcriptional silencing are abundant and subfunctionalization has led to specialized machinery responsible for synthesis and action of these small RNAs. In particular, plants possess polymerase (Pol) IV and Pol V, multi-subunit homologs of the canonical DNA-dependent RNA Pol II, as well as specialized members of the RNA-dependent RNA Polymerase (RDR), Dicer-like (DCL), and Argonaute (AGO) families. Together these enzymes are required for production and activity of Pol IV-dependent (p4-)siRNAs, which trigger RNA-directed DNA methylation (RdDM) at homologous sequences. p4-siRNAs accumulate highly in developing endosperm, a specialized tissue found only in flowering plants, and are rare in nonflowering plants, suggesting that the evolution of flowers might coincide with the emergence of specialized RdDM machinery. Through comprehensive identification of RdDM genes from species representing the breadth of the land plant phylogeny, we describe the ancient origin of Pol IV and Pol V, suggesting that a nearly complete and functional RdDM pathway could have existed in the earliest land plants. We also uncover innovations in these enzymes that are coincident with the emergence of seed plants and flowering plants, and recent duplications that might indicate additional subfunctionalization. Phylogenetic analysis reveals rapid evolution of Pol IV and Pol V subunits relative to their Pol II counterparts and suggests that duplicates were retained and subfunctionalized through Escape from Adaptive Conflict. Evolution within the carboxy-terminal domain of the Pol V largest subunit is particularly striking, where illegitimate recombination facilitated extreme sequence divergence.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Filogenia , Proteínas de Plantas/genética , Plantas/enzimologia , Plantas/genética , Sequência de Aminoácidos , RNA Polimerases Dirigidas por DNA/química , Evolução Molecular , Flores/genética , Duplicação Gênica , Inativação Gênica , Genes de Plantas , Magnoliopsida/enzimologia , Dados de Sequência Molecular , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Especificidade da Espécie
6.
Genome Biol Evol ; 16(6)2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38874416

RESUMO

In flowering plants, euchromatic transposons are transcriptionally silenced by RNA-directed DNA Methylation, a small RNA-guided de novo methylation pathway. RNA-directed DNA Methylation requires the activity of the RNA Polymerases IV and V, which produce small RNA precursors and noncoding targets of small RNAs, respectively. These polymerases are distinguished from Polymerase II by multiple plant-specific paralogous subunits. Most RNA-directed DNA Methylation components are present in all land plants, and some have been found in the charophytic green algae, a paraphyletic group that is sister to land plants. However, the evolutionary origin of key RNA-directed DNA Methylation components, including the two largest subunits of Polymerase IV and Polymerase V, remains unclear. Here, we show that multiple lineages of charophytic green algae encode a single-copy precursor of the largest subunits of Polymerase IV and Polymerase V, resolving the two presumed duplications in this gene family. We further demonstrate the presence of a Polymerase V-like C-terminal domain, suggesting that the earliest form of RNA-directed DNA Methylation utilized a single Polymerase V-like polymerase. Finally, we reveal that charophytic green algae encode a single CLSY/DRD1-type chromatin remodeling protein, further supporting the presence of a single specialized polymerase in charophytic green algae.


Assuntos
Metilação de DNA , RNA Polimerases Dirigidas por DNA , Evolução Molecular , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Filogenia , Carofíceas/genética , Carofíceas/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorófitas/genética , Clorófitas/enzimologia , Subunidades Proteicas/genética
7.
Plant Direct ; 7(1): e476, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36628155

RESUMO

Locules are the seed-bearing structure of fruits. Multiple locules are associated with increased fruit size and seed set, and therefore, control of locule number is an important agronomic trait. Locule number is controlled in part by the CLAVATA-WUSCHEL pathway. Disruption of either the CLAVATA1 receptor-like kinase or its ligand CLAVATA3 can cause larger floral meristems and an increased number of locules. In an EMS mutagenized population of Brassica rapa, we identified a mutant allele that raises the number of locules from four to a range of from six to eight. Linkage mapping and genetic analysis support that the mutant phenotype is due to a missense mutation in a CLAVATA 1 (CLV1) homolog. In addition to increased locule number, additional internal gynoecia are formed in brclv1 individuals, suggesting a failure to terminate floral meristem development, which results in decreased seed production.

8.
J Biol Chem ; 286(35): 30981-30993, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21757698

RESUMO

We examined over 50 mutations in the Drosophila ßPS integrin subunit that alter integrin function in situ for their ability to bind a soluble monovalent ligand, TWOW-1. Surprisingly, very few of the mutations, which were selected for conditional lethality in the fly, reduce the ligand binding ability of the integrin. The most prevalent class of mutations activates the integrin heterodimer. These findings emphasize the importance of integrin affinity regulation and point out how molecular interactions throughout the integrin molecule are important in keeping the integrin in a low affinity state. Mutations strongly support the controversial deadbolt hypothesis, where the CD loop in the ß tail domain acts to restrain the I domain in the inactive, bent conformation. Site-directed mutations in the cytoplasmic domains of ßPS and αPS2C reveal different effects on ligand binding from those observed for αIIbß3 integrins and identify for the first time a cytoplasmic cysteine residue, conserved in three human integrins, as being important in affinity regulation. In the fly, we find that genetic interactions of the ßPS mutations with reduction in talin function are consistent with the integrin affinity differences measured in cells. Additionally, these genetic interactions report on increased and decreased integrin functions that do not result in affinity changes in the PS2C integrin measured in cultured cells.


Assuntos
Proteínas de Drosophila/genética , Matriz Extracelular/metabolismo , Cadeias alfa de Integrinas/genética , Cadeias beta de Integrinas/genética , Mutação , Alelos , Animais , Adesão Celular , Drosophila , Humanos , Ligação de Hidrogênio , Ligantes , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas/química , Talina/metabolismo
9.
Dev Biol ; 340(2): 504-17, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20152825

RESUMO

Morphogenesis of the adult structures of holometabolous insects is regulated by ecdysteroids and juvenile hormones and involves cell-cell interactions mediated in part by the cell surface integrin receptors and their extracellular matrix (ECM) ligands. These adhesion molecules and their regulation by hormones are not well characterized. We describe the gene structure of a newly described ECM molecule, tenectin, and demonstrate that it is a hormonally regulated ECM protein required for proper morphogenesis of the adult wing and male genitalia. Tenectin's function as a new ligand of the PS2 integrins is demonstrated by both genetic interactions in the fly and by cell spreading and cell adhesion assays in cultured cells. Its interaction with the PS2 integrins is dependent on RGD and RGD-like motifs. Tenectin's function in looping morphogenesis in the development of the male genitalia led to experiments that demonstrate a role for PS integrins in the execution of left-right asymmetry.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Genitália Masculina/fisiologia , Asas de Animais/fisiologia , Animais , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas da Matriz Extracelular/genética , Imuno-Histoquímica , Hibridização In Situ , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Larva/genética , Larva/metabolismo , Ligantes , Masculino , Morfogênese/genética , Mutação , Transgenes , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
10.
Genome Biol ; 22(1): 140, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957938

RESUMO

BACKGROUND: RNA-directed DNA methylation (RdDM) initiates cytosine methylation in all contexts and maintains asymmetric CHH methylation. Mature plant embryos show one of the highest levels of CHH methylation, and it has been suggested that RdDM is responsible for this hypermethylation. Because loss of RdDM in Brassica rapa causes seed abortion, embryo methylation might play a role in seed development. RdDM is required in the maternal sporophyte, suggesting that small RNAs from the maternal sporophyte might translocate to the developing embryo, triggering DNA methylation that prevents seed abortion. This raises the question of whether embryo hypermethylation is autonomously regulated by the embryo itself or influenced by the maternal sporophyte. RESULTS: Here, we demonstrate that B. rapa embryos are hypermethylated in both euchromatin and heterochromatin and that this process requires RdDM. Contrary to the current models, B. rapa embryo hypermethylation is not correlated with demethylation of the endosperm. We also show that maternal somatic RdDM is not sufficient for global embryo hypermethylation, and we find no compelling evidence for maternal somatic influence over embryo methylation at any locus. Decoupling of maternal and zygotic RdDM leads to successful seed development despite the loss of embryo CHH hypermethylation. CONCLUSIONS: We conclude that embryo CHH hypermethylation is conserved, autonomously controlled, and not required for embryo development. Furthermore, maternal somatic RdDM, while required for seed development, does not directly influence embryo methylation patterns.


Assuntos
Brassica rapa/embriologia , Metilação de DNA/genética , RNA de Plantas/metabolismo , Sementes/genética , Brassica rapa/genética , Centrômero/metabolismo , Endosperma/embriologia , Endosperma/genética , Genótipo
11.
Biology (Basel) ; 2(4): 1210-23, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24833221

RESUMO

Plants produce a diverse array of small RNA molecules capable of gene regulation, including Pol IV-dependent short interfering (p4-si)RNAs that trigger transcriptional gene silencing. Small RNA transcriptomes are available for many plant species, but mutations affecting the synthesis of Pol IV-dependent siRNAs are characterized only in Arabidopsis and maize, leading to assumptions regarding nature of p4-siRNAs in all other species. We have identified a mutation in the largest subunit of Pol IV, NRPD1, that impacts Pol IV activity in Brassica rapa, an agriculturally important relative of the reference plant Arabidopsis. Using this mutation we characterized the Pol IV-dependent and Pol IV-independent small RNA populations in B. rapa. In addition, our analysis demonstrates reduced production of p4-siRNAs in B. rapa relative to Arabidopsis. B. rapa genomic regions are less likely to generate p4-siRNAs than Arabidopsis but more likely to generate Pol IV-independent siRNAs, including 24 nt RNAs mapping to transposable elements. These observations underscore the diversity of small RNAs produced by plants and highlight the importance of genetic studies during small RNA analysis.

12.
J Cell Biochem ; 102(1): 211-23, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17372926

RESUMO

The Drosophila alphaPS2 integrin subunit is found in two isoforms. alphaPS2C contains 25 residues not found in alphaPS2m8, encoded by the alternative eighth exon. Previously, it was shown that cells expressing alphaPS2C spread more effectively than alphaPS2m8 cells on fragments of the ECM protein Tiggrin, and that alphaPS2C-containing integrins are relatively insensitive to depletion of Ca(2+). Using a ligand mimetic probe for Tiggrin affinity (TWOW-1), we show that the affinity of alphaPS2CbetaPS for this ligand is much higher than that of alphaPS2m8betaPS. However, the two isoforms become more similar in the presence of activating levels of Mn(2+). Modeling indicates that the exon 8-encoded residues replace the third beta strand of the third blade of the alpha subunit beta-propeller structure, and generate an exaggerated loop between this and the fourth strand. alphaPS2 subunits with the extra loop structure but with an m8-like third strand, or subunits with a C-like strand but an m8-like short loop, both fail to show alphaPS2C-like affinity for TWOW-1. Surprisingly, a single C > m8-like change at the third strand-loop transition point is sufficient to make alphaPS2C require Ca(2+) for function, despite the absence of any known cation binding site in this region. These data indicate that alternative splicing in integrin alpha subunit extracellular domains may affect ligand affinity via relatively subtle alterations in integrin conformation. These results may have relevance for vertebrate alpha6 and alpha7, which are alternatively spliced at the same site.


Assuntos
Processamento Alternativo , Proteínas de Drosophila/química , Cadeias alfa de Integrinas/química , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Isoformas de Proteínas/química , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Alinhamento de Sequência
13.
J Biol Chem ; 281(8): 5050-7, 2006 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16371365

RESUMO

We developed a ligand-mimetic antibody Fab fragment specific for Drosophila alphaPS2betaPS integrins to probe the ligand binding affinities of these invertebrate receptors. TWOW-1 was constructed by inserting a fragment of the extracellular matrix protein Tiggrin into the H-CDR3 of the alphavbeta3 ligand-mimetic antibody WOW-1. The specificity of alphaPS2betaPS binding to TWOW-1 was demonstrated by numerous tests used for other integrin-ligand interactions. Binding was decreased in the presence of EDTA or RGD peptides and by mutation of the TWOW-1 RGD sequence or the betaPS metal ion-dependent adhesion site (MIDAS) motif. TWOW-1 binding was increased by mutations in the alphaPS2 membrane-proximal cytoplasmic GFFNR sequence or by exposure to Mn2+. Although Mn2+ is sometimes assumed to promote maximal integrin activity, TWOW-1 binding in Mn2+ could be increased further by the alphaPS2 GFFNR --> GFANA mutation. A mutation in the betaPS I domain (betaPS-b58; V409D) greatly increased ligand binding affinity, explaining the increased cell spreading mediated by alphaPS2betaPS-b58. Further mutagenesis of this residue suggested that Val-409 normally stabilizes the closed head conformation. Mutations that potentially reduce interaction of the integrin beta subunit plexin-semaphorin-integrin (PSI) and stalk domains have been shown to have activating properties. We found that complete deletion of the betaPS PSI domain enhanced TWOW-1 binding. Moreover the PSI domain is dispensable for at least some other integrin functions because betaPS-DeltaPSI displayed an enhanced ability to mediate cell spreading. These studies establish a means to evaluate mechanisms and consequences of integrin affinity modulation in a tractable model genetic system.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Cadeias alfa de Integrinas/química , Cadeias alfa de Integrinas/genética , Motivos de Aminoácidos , Animais , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Drosophila , Ácido Edético/química , Integrina alfaVbeta3/metabolismo , Integrinas/química , Integrinas/metabolismo , Ligantes , Manganês/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação , Oligopeptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA