Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunol Rev ; 317(1): 71-94, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36999733

RESUMO

The mevalonate pathway is an essential metabolic pathway in T cells regulating development, proliferation, survival, differentiation, and effector functions. The mevalonate pathway is a complex, branched pathway composed of many enzymes that ultimately generate cholesterol and nonsterol isoprenoids. T cells must tightly control metabolic flux through the branches of the mevalonate pathway to ensure sufficient isoprenoids and cholesterol are available to meet cellular demands. Unbalanced metabolite flux through the sterol or the nonsterol isoprenoid branch is metabolically inefficient and can have deleterious consequences for T cell fate and function. Accordingly, there is tight regulatory control over metabolic flux through the branches of this essential lipid synthetic pathway. In this review we provide an overview of how the branches of the mevalonate pathway are regulated in T cells and discuss our current understanding of the relationship between mevalonate metabolism, cholesterol homeostasis and T cell function.


Assuntos
Ácido Mevalônico , Linfócitos T , Humanos , Ácido Mevalônico/metabolismo , Linfócitos T/metabolismo , Colesterol/metabolismo , Redes e Vias Metabólicas , Terpenos/metabolismo
2.
Mol Ther ; 29(7): 2335-2349, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-33647456

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has led to impressive clinical responses in patients with hematological malignancies; however, its effectiveness in patients with solid tumors has been limited. While CAR T cells for the treatment of advanced prostate and pancreas cancer, including those targeting prostate stem cell antigen (PSCA), are being clinically evaluated and are anticipated to show bioactivity, their safety and the impact of the immunosuppressive tumor microenvironment (TME) have not been faithfully explored preclinically. Using a novel human PSCA knockin (hPSCA-KI) immunocompetent mouse model, we evaluated the safety and therapeutic efficacy of PSCA-CAR T cells. We demonstrated that cyclophosphamide (Cy) pre-conditioning significantly modified the immunosuppressive TME and was required to uncover the efficacy of PSCA-CAR T cells in metastatic prostate and pancreas cancer models, with no observed toxicities in normal tissues with endogenous expression of PSCA. This combination dampened the immunosuppressive TME, generated pro-inflammatory myeloid and T cell signatures in tumors, and enhanced the recruitment of antigen-presenting cells, as well as endogenous and adoptively transferred T cells, resulting in long-term anti-tumor immunity.


Assuntos
Ciclofosfamida/farmacologia , Imunoterapia Adotiva/métodos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Pancreáticas/terapia , Neoplasias da Próstata/terapia , Microambiente Tumoral , Animais , Antígenos de Neoplasias/genética , Apoptose , Proliferação de Células , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agonistas Mieloablativos/farmacologia , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Ther Oncol ; 32(2): 200789, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38939825

RESUMO

Advancing chimeric antigen receptor (CAR)-engineered T cells for the treatment of solid tumors is a major focus in the field of cellular immunotherapy. Several hurdles have hindered similar CAR T cell clinical responses in solid tumors as seen in hematological malignancies. These challenges include on-target off-tumor toxicities, which have inspired efforts to optimize CARs for improved tumor antigen selectivity and overall safety. We recently developed a CAR T cell therapy targeting prostate stem cell antigen (PSCA) for prostate and pancreatic cancers, showing improved preclinical antitumor activity and T cell persistence by optimizing the intracellular co-stimulatory domain. Similar studies were undertaken to optimize HER2-directed CAR T cells with modifications to the intracellular co-stimulatory domain for selective targeting of breast cancer brain metastasis. In the present study, we evaluate various nonsignaling extracellular spacers in these CARs to further improve tumor antigen selectivity. Our findings suggest that length and structure of the extracellular spacer can dictate the ability of CARs to selectively target tumor cells with high antigen density, while sparing cells with low antigen density. This study contributes to CAR construct design considerations and expands our knowledge of tuning solid tumor CAR T cell therapies for improved safety and efficacy.

4.
Oncoimmunology ; 7(2): e1380764, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29308300

RESUMO

Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with "on-target off-tumor" activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA