Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Neuroimage ; 275: 120168, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37187364

RESUMO

PURPOSE: To develop a high-fidelity diffusion MRI acquisition and reconstruction framework with reduced echo-train-length for less T2* image blurring compared to typical highly accelerated echo-planar imaging (EPI) acquisitions at sub-millimeter isotropic resolution. METHODS: We first proposed a circular-EPI trajectory with partial Fourier sampling on both the readout and phase-encoding directions to minimize the echo-train-length and echo time. We then utilized this trajectory in an interleaved two-shot EPI acquisition with reversed phase-encoding polarity, to aid in the correction of off-resonance-induced image distortions and provide complementary k-space coverage in the missing partial Fourier regions. Using model-based reconstruction with structured low-rank constraint and smooth phase prior, we corrected the shot-to-shot phase variations across the two shots and recover the missing k-space data. Finally, we combined the proposed acquisition/reconstruction framework with an SNR-efficient RF-encoded simultaneous multi-slab technique, termed gSlider, to achieve high-fidelity 720 µm and 500 µm isotropic resolution in-vivo diffusion MRI. RESULTS: Both simulation and in-vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide distortion-corrected diffusion imaging at the mesoscale with markedly reduced T2*-blurring. The in-vivo results of 720 µm and 500 µm datasets show high-fidelity diffusion images with reduced image blurring and echo time using the proposed approaches. CONCLUSIONS: The proposed method provides high-quality distortion-corrected diffusion-weighted images with ∼40% reduction in the echo-train-length and T2* blurring at 500µm-isotropic-resolution compared to standard multi-shot EPI.


Assuntos
Encéfalo , Imagem Ecoplanar , Humanos , Imagem Ecoplanar/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Simulação por Computador
2.
Hum Brain Mapp ; 44(1): 280-294, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308417

RESUMO

Blood and cerebrospinal fluid (CSF) pulse and flow throughout the brain, driven by the cardiac cycle. These fluid dynamics, which are essential to healthy brain function, are characterized by several noninvasive magnetic resonance imaging (MRI) methods. Recent developments in fast MRI, specifically simultaneous multislice acquisition methods, provide a new opportunity to rapidly and broadly assess cardiac-driven flow, including CSF spaces, surface vessels and parenchymal vessels. We use these techniques to assess blood and CSF flow dynamics in brief (3.5 min) scans on a conventional 3 T MRI scanner in five subjects. Cardiac pulses are measured with a photoplethysmography (PPG) on the index finger, along with functional MRI (fMRI) signals in the brain. We, retrospectively, align the fMRI signals to the heartbeat. Highly reliable cardiac-gated fMRI temporal signals are observed in CSF and blood on the timescale of one heartbeat (test-retest reliability within subjects R2  > 50%). In blood vessels, a local minimum is observed following systole. In CSF spaces, the ventricles and subarachnoid spaces have a local maximum following systole instead. Slower resting-state scans with slice timing, retrospectively, aligned to the cardiac pulse, reveal similar cardiac-gated responses. The cardiac-gated measurements estimate the amplitude and phase of fMRI pulsations in the CSF relative to those in the arteries, an estimate of the local intracranial impedance. Cardiac aligned fMRI signals can provide new insights about fluid dynamics or diagnostics for diseases where these dynamics are important.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem
3.
Neuroimage ; 245: 118694, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34732328

RESUMO

In this paper we provide an overview of the rationale, methods, and preliminary results of the four Connectome Studies Related to Human Disease investigating mood and anxiety disorders. The first study, "Dimensional connectomics of anxious misery" (HCP-DAM), characterizes brain-symptom relations of a transdiagnostic sample of anxious misery disorders. The second study, "Human connectome Project for disordered emotional states" (HCP-DES), tests a hypothesis-driven model of brain circuit dysfunction in a sample of untreated young adults with symptoms of depression and anxiety. The third study, "Perturbation of the treatment resistant depression connectome by fast-acting therapies" (HCP-MDD), quantifies alterations of the structural and functional connectome as a result of three fast-acting interventions: electroconvulsive therapy, serial ketamine therapy, and total sleep deprivation. Finally, the fourth study, "Connectomes related to anxiety and depression in adolescents" (HCP-ADA), investigates developmental trajectories of subtypes of anxiety and depression in adolescence. The four projects use comparable and standardized Human Connectome Project magnetic resonance imaging (MRI) protocols, including structural MRI, diffusion-weighted MRI, and both task and resting state functional MRI. All four projects also conducted comprehensive and convergent clinical and neuropsychological assessments, including (but not limited to) demographic information, clinical diagnoses, symptoms of mood and anxiety disorders, negative and positive affect, cognitive function, and exposure to early life stress. The first round of analyses conducted in the four projects offered novel methods to investigate relations between functional connectomes and self-reports in large datasets, identified new functional correlates of symptoms of mood and anxiety disorders, characterized the trajectory of connectome-symptom profiles over time, and quantified the impact of novel treatments on aberrant connectivity. Taken together, the data obtained and reported by the four Connectome Studies Related to Human Disease investigating mood and anxiety disorders describe a rich constellation of convergent biological, clinical, and behavioral phenotypes that span the peak ages for the onset of emotional disorders. These data are being prepared for open sharing with the scientific community following screens for quality by the Connectome Coordinating Facility (CCF). The CCF also plans to release data from all projects that have been pre-processed using identical state-of-the-art pipelines. The resultant dataset will give researchers the opportunity to pool complementary data across the four projects to study circuit dysfunctions that may underlie mood and anxiety disorders, to map cohesive relations among circuits and symptoms, and to probe how these relations change as a function of age and acute interventions. This large and combined dataset may also be ideal for using data-driven analytic approaches to inform neurobiological targets for future clinical trials and interventions focused on clinical or behavioral outcomes.


Assuntos
Transtornos de Ansiedade/fisiopatologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Transtornos do Humor/fisiopatologia , Adolescente , Adulto , Transtornos de Ansiedade/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Humor/terapia
4.
Neuroimage ; 214: 116715, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32147367

RESUMO

Through the Human Connectome Project (HCP) our understanding of the functional connectome of the healthy brain has been dramatically accelerated. Given the pressing public health need, we must increase our understanding of how connectome dysfunctions give rise to disordered mental states. Mental disorders arising from high levels of negative emotion or from the loss of positive emotional experience affect over 400 million people globally. Such states of disordered emotion cut across multiple diagnostic categories of mood and anxiety disorders and are compounded by accompanying disruptions in cognitive function. Not surprisingly, these forms of psychopathology are the leading cause of disability worldwide. The Research Domain Criteria (RDoC) initiative spearheaded by NIMH offers a framework for characterizing the relations among connectome dysfunctions, anchored in neural circuits and phenotypic profiles of behavior and self-reported symptoms. Here, we report on our Connectomes Related to Human Disease protocol for integrating an RDoC framework with HCP protocols to characterize connectome dysfunctions in disordered emotional states, and present quality control data from a representative sample of participants. We focus on three RDoC domains and constructs most relevant to depression and anxiety: 1) loss and acute threat within the Negative Valence System (NVS) domain; 2) reward valuation and responsiveness within the Positive Valence System (PVS) domain; and 3) working memory and cognitive control within the Cognitive System (CS) domain. For 29 healthy controls, we present preliminary imaging data: functional magnetic resonance imaging collected in the resting state and in tasks matching our constructs of interest ("Emotion", "Gambling" and "Continuous Performance" tasks), as well as diffusion-weighted imaging. All functional scans demonstrated good signal-to-noise ratio. Established neural networks were robustly identified in the resting state condition by independent component analysis. Processing of negative emotional faces significantly activated the bilateral dorsolateral prefrontal and occipital cortices, fusiform gyrus and amygdalae. Reward elicited a response in the bilateral dorsolateral prefrontal, parietal and occipital cortices, and in the striatum. Working memory was associated with activation in the dorsolateral prefrontal, parietal, motor, temporal and insular cortices, in the striatum and cerebellum. Diffusion tractography showed consistent profiles of fractional anisotropy along known white matter tracts. We also show that results are comparable to those in a matched sample from the HCP Healthy Young Adult data release. These preliminary data provide the foundation for acquisition of 250 subjects who are experiencing disordered emotional states. When complete, these data will be used to develop a neurobiological model that maps connectome dysfunctions to specific behaviors and symptoms.


Assuntos
Ansiedade/fisiopatologia , Encéfalo/fisiologia , Conectoma/métodos , Depressão/fisiopatologia , Vias Neurais/fisiopatologia , Sintomas Afetivos/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiologia , Adulto Jovem
5.
Magn Reson Med ; 83(6): 2221-2231, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31691350

RESUMO

PURPOSE: To develop a modular magnetization preparation sequence for combined T2 -preparation and multidimensional outer volume suppression (OVS) for coronary artery imaging. METHODS: A combined T2 -prepared 1D OVS sequence with fat saturation was defined to contain a 90°-60 180°60 composite nonselective tip-down pulse, two 180°Y hard pulses for refocusing, and a -90° spectral-spatial sinc tip-up pulse. For 2D OVS, 2 modules were concatenated, selective in X and then Y. Bloch simulations predicted robustness of the sequence to B0 and B1 inhomogeneities. The proposed sequence was compared with a T2 -prepared 2D OVS sequence proposed by Luo et al, which uses a spatially selective 2D spiral tip-up. The 2 sequences were compared in phantom studies and in vivo coronary artery imaging studies with a 3D cones trajectory. RESULTS: Phantom results demonstrated superior OVS for the proposed sequence compared with the Luo sequence. In studies on 15 healthy volunteers, the proposed sequence had superior image edge profile acutance values compared with the Luo sequence for the right (P < .05) and left (P < .05) coronary arteries, suggesting superior vessel sharpness. The proposed sequence also had superior signal-to-noise ratio (P < .05) and passband-to-stopband ratio (P < .05). Reader scores and reader preference indicated superior coronary image quality of the proposed sequence for both the right (P < .05) and left (P < .05) coronary arteries. CONCLUSION: The proposed sequence with concatenated 1D spatially selective tip-ups and integrated fat saturation has superior image quality and suppression compared with the Luo sequence with 2D spatially selective tip-up.


Assuntos
Vasos Coronários , Aumento da Imagem , Vasos Coronários/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Angiografia por Ressonância Magnética , Imagens de Fantasmas
6.
Magn Reson Med ; 79(1): 430-438, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28370409

RESUMO

PURPOSE: To determine the effects of the RF refocusing pulse profile on the magnitude of the transverse signal smoothness throughout the echo train in non-Carr-Purcell-Meiboom-Gill (nCPMG) single-shot fast spin echo (SS-FSE) imaging and to design an RF refocusing pulse that provides improved signal stability. THEORY AND METHODS: nCPMG SS-FSE quadratic phase modulation requires sufficiently high and uniform refocusing flip angle to achieve a stable signal. Typically, refocusing pulses used in SS-FSE sequences are designed for minimum duration to minimize echo spacing and as a consequence have poor selectivity. However, delay-insensitive variable rate excitation Shinnar-Le Roux (DV-SLR) refocusing pulses can achieve both improved selectivity as well as a short duration. This class of RF pulse is compared against a traditional low time-bandwidth refocusing pulse in a nCPMG SS-FSE in simulation, phantom, and in vivo. RESULTS: DV-SLR pulses achieve a more stable signal in simulation, phantom, and in vivo cases while maintaining an appropriately short duration as well as not dramatically increasing specific absorption rate (SAR) accumulation. CONCLUSION: The nCPMG SS-FSE method demonstrates improved robustness when a more selective refocusing pulse is used. Refocusing pulses that use a time-varying excitation gradient can achieve this selectivity while maintaining short echo spacing. Magn Reson Med 79:430-438, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Imagem Ecoplanar , Processamento de Imagem Assistida por Computador , Ondas de Rádio , Algoritmos , Simulação por Computador , Voluntários Saudáveis , Humanos , Masculino , Modelos Estatísticos , Imagens de Fantasmas , Software
7.
Magn Reson Med ; 79(6): 3032-3044, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29044721

RESUMO

PURPOSE: This work demonstrates a magnetization prepared diffusion-weighted single-shot fast spin echo (SS-FSE) pulse sequence for the application of body imaging to improve robustness to geometric distortion. This work also proposes a scan averaging technique that is superior to magnitude averaging and is not subject to artifacts due to object phase. THEORY AND METHODS: This single-shot sequence is robust against violation of the Carr-Purcell-Meiboom-Gill (CPMG) condition. This is achieved by dephasing the signal after diffusion weighting and tipping the MG component of the signal onto the longitudinal axis while the non-MG component is spoiled. The MG signal component is then excited and captured using a traditional SS-FSE sequence, although the echo needs to be recalled prior to each echo. Extended Parallel Imaging (ExtPI) averaging is used where coil sensitivities from the multiple acquisitions are concatenated into one large parallel imaging (PI) problem. The size of the PI problem is reduced by SVD-based coil compression which also provides background noise suppression. This sequence and reconstruction are evaluated in simulation, phantom scans, and in vivo abdominal clinical cases. RESULTS: Simulations show that the sequence generates a stable signal throughout the echo train which leads to good image quality. This sequence is inherently low-SNR, but much of the SNR can be regained through scan averaging and the proposed ExtPI reconstruction. In vivo results show that the proposed method is able to provide diffusion encoded images while mitigating geometric distortion artifacts compared to EPI. CONCLUSION: This work presents a diffusion-prepared SS-FSE sequence that is robust against the violation of the CPMG condition while providing diffusion contrast in clinical cases. Magn Reson Med 79:3032-3044, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Abdome/diagnóstico por imagem , Adolescente , Algoritmos , Artefatos , Criança , Pré-Escolar , Simulação por Computador , Meios de Contraste , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Lactente , Campos Magnéticos , Magnetismo , Pelve/diagnóstico por imagem , Imagens de Fantasmas , Marcadores de Spin
8.
Magn Reson Med ; 80(5): 2062-2072, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29575178

RESUMO

PURPOSE: The purpose of this study was to develop a new 3D dynamic carbon-13 compressed sensing echoplanar spectroscopic imaging (EPSI) MR sequence and test it in phantoms, animal models, and then in prostate cancer patients to image the metabolic conversion of hyperpolarized [1-13 C]pyruvate to [1-13 C]lactate with whole gland coverage at high spatial and temporal resolution. METHODS: A 3D dynamic compressed sensing (CS)-EPSI sequence with spectral-spatial excitation was designed to meet the required spatial coverage, time and spatial resolution, and RF limitations of the 3T MR scanner for its clinical translation for prostate cancer patient imaging. After phantom testing, animal studies were performed in rats and transgenic mice with prostate cancers. For patient studies, a GE SPINlab polarizer (GE Healthcare, Waukesha, WI) was used to produce hyperpolarized sterile GMP [1-13 C]pyruvate. 3D dynamic 13 C CS-EPSI data were acquired starting 5 s after injection throughout the gland with a spatial resolution of 0.5 cm3 , 18 time frames, 2-s temporal resolution, and 36 s total acquisition time. RESULTS: Through preclinical testing, the 3D CS-EPSI sequence developed in this project was shown to provide the desired spectral, temporal, and spatial 5D HP 13 C MR data. In human studies, the 3D dynamic HP CS-EPSI approach provided first-ever simultaneously volumetric and dynamic images of the LDH-catalyzed conversion of [1-13 C]pyruvate to [1-13 C]lactate in a biopsy-proven prostate cancer patient with full gland coverage. CONCLUSION: The results demonstrate the feasibility to characterize prostate cancer metabolism in animals, and now patients using this new 3D dynamic HP MR technique to measure kPL , the kinetic rate constant of [1-13 C]pyruvate to [1-13 C]lactate conversion.


Assuntos
Imagem Ecoplanar/métodos , Imageamento Tridimensional/métodos , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Animais , Humanos , Masculino , Camundongos , Imagens de Fantasmas , Próstata/diagnóstico por imagem , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Ratos
9.
Magn Reson Med ; 77(1): 229-236, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26778689

RESUMO

PURPOSE: We propose a method to acquire B1 distribution plots by encoding in B1 instead of image space. Using this method, B1 data is acquired in a different way from traditional spatial B1 mapping, and allows for quick measurement of high dynamic range B1 data. METHODS: To encode in B1, we acquire multiple projections of a slice, each along the same direction, but using a different phase sensitivity to B1. Using a convex optimization formulation, we reconstruct histograms of the B1 distribution estimates of the slice. RESULTS: We verify in vivo B1 distribution measurements by comparing measured distributions to distributions calculated from reference spatial B1 maps using the Earth Mover's Distance. Phantom measurements using a surface coil show that for increased spatial B1 variations, measured B1 distributions using the proposed method more accurately estimate the distribution than a low-resolution spatial B1 map, resulting in a 37% Earth Mover's Distance decrease while using fewer measurements. CONCLUSION: We propose and validate the performance of a method to acquire B1 distribution information directly without acquiring a spatial B1 map. The method may provide faster estimates of a B1 field for applications that do not require spatial B1 localization, such as the transmit gain calibration of the scanner, particularly for high dynamic B1 ranges. Magn Reson Med 77:229-236, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Humanos , Imagens de Fantasmas
10.
Magn Reson Med ; 75(3): 1262-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25846905

RESUMO

PURPOSE: Accurate measurement of the nonuniform transmit radiofrequency field is necessary for magnetic resonance imaging applications. The radiofrequency field excitation amplitude (B1) is often obtained by acquiring a B1 map. We modify the B1 estimation using adiabatic refocusing (BEAR) method to extend its range to lower B1 magnitudes. THEORY AND METHODS: The BEAR method is a phase-based B1 mapping method, wherein hyperbolic secant pulses induce a phase sensitivity to B1. The measurable B1 range is limited due to the adiabatic threshold of the pulses. We redesign the method to use flattened hyperbolic secant pulses, which have lower adiabatic thresholds. We optimize the flattened hyperbolic secant parameters to minimize phase sensitivity to frequency variations. RESULTS: We validate the performance of the new method via simulation and in vivo at 3T, and show that for n ≤ 8, accurate B1 maps can be acquired using reduced nominal peak B1 values. CONCLUSION: The adiabatic threshold for the BEAR method is reduced with flattened hyperbolic secant pulses, which are optimized for accurate phase-to-B1 mapping over a frequency range, and allow for lower nominal B1 values. At 3T, the nominal B1 is decreased by 52% and the sensitivity to B1 is increased by a factor of 3.8. This can improve the method's applicability for measurement of low B1.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Encéfalo/diagnóstico por imagem , Humanos , Imagens de Fantasmas
11.
Magn Reson Med ; 75(3): 933-45, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25943445

RESUMO

PURPOSE: To assess the feasibility of prostate (1)H MR spectroscopic imaging (MRSI) using low-power spectral-spatial (SPSP) pulses at 7T, exploiting accurate spectral selection and spatial selectivity simultaneously. METHODS: A double spin-echo sequence was equipped with SPSP refocusing pulses with a spectral selectivity of 1 ppm. Three-dimensional prostate (1)H-MRSI at 7T was performed with the SPSP-MRSI sequence using an 8-channel transmit array coil and an endorectal receive coil in three patients with prostate cancer and in one healthy subject. No additional water or lipid suppression pulses were used. RESULTS: Prostate (1)H-MRSI could be obtained well within specific absorption rate (SAR) limits in a clinically feasible time (10 min). Next to the common citrate signals, the prostate spectra exhibited high spermine signals concealing creatine and sometimes also choline. Residual lipid signals were observed at the edges of the prostate because of limitations in spectral and spatial selectivity. CONCLUSION: It is possible to perform prostate (1)H-MRSI at 7T with a SPSP-MRSI sequence while using separate transmit and receive coils. This low-SAR MRSI concept provides the opportunity to increase spatial resolution of MRSI within reasonable scan times.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/métodos , Adulto , Idoso , Aminas/química , Ácido Cítrico/química , Humanos , Masculino , Imagens de Fantasmas , Próstata/química , Próstata/metabolismo , Próstata/fisiologia , Processamento de Sinais Assistido por Computador
12.
Magn Reson Med ; 74(3): 727-38, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25203505

RESUMO

PURPOSE: To develop a new sequence for non-contrast-enhanced peripheral angiography using a sliding interleaved cylinder (SLINCYL) acquisition. METHODS: A venous saturation pulse was incorporated into a three-dimensional magnetization-prepared balanced steady-state free precession sequence for non-contrast-enhanced peripheral angiography to improve artery-vein contrast. The SLINCYL acquisition, which consists of a series of overlapped thin slabs for volumetric coverage similar to the original sliding interleaved ky (SLINKY) acquisition, was used to evenly distribute the venous-suppression effects over the field of view. In addition, the thin-slab-scan nature of SLINCYL and the centric-ordered sampling geometry of its readout trajectory were exploited to implement efficient fluid-suppression and parallel imaging schemes. The sequence was tested in healthy subjects and a patient. RESULTS: Compared to a multiple overlapped thin slab acquisition, both SLINKY and SLINCYL suppressed the venetian blind artifacts and provided similar artery-vein contrast. However, SLINCYL achieved this with shorter scan times and less noticeable artifacts from k-space amplitude modulation than SLINKY. The fluid-suppression and parallel imaging schemes were also validated. A patient study using the SLINCYL-based sequence well identified stenoses at the superficial femoral arteries, which were also confirmed with digital subtraction angiography. CONCLUSION: Non-contrast-enhanced angiography using SLINCYL can provide angiograms with improved artery-vein contrast in the lower extremities.


Assuntos
Imageamento Tridimensional/métodos , Angiografia por Ressonância Magnética/métodos , Idoso , Artefatos , Humanos , Masculino , Coxa da Perna/irrigação sanguínea
13.
Magn Reson Med ; 74(4): 978-89, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25298086

RESUMO

PURPOSE: A chemical shift separation technique for hyperpolarized (13) C metabolic imaging with high spatial and temporal resolution was developed. Specifically, a fast three-dimensional pulse sequence and a reconstruction method were implemented to acquire signals from multiple (13) C species simultaneously with subsequent separation into individual images. THEORY AND METHODS: A stack of flyback echo-planar imaging readouts and a set of multiband excitation radiofrequency pulses were designed to spatially modulate aliasing patterns of the acquired metabolite images, which translated the chemical shift separation problem into parallel imaging reconstruction problem. An eight-channel coil array was used for data acquisition and a parallel imaging method based on nonlinear inversion was developed to separate the aliased images. RESULTS: Simultaneous acquisitions of pyruvate and lactate in a phantom study and in vivo rat experiments were performed. The results demonstrated successful separation of the metabolite distributions into individual images having high spatial resolution. CONCLUSION: This method demonstrated the ability to provide accelerated metabolite imaging in hyperpolarized (13) C MR using multichannel coils, tailored readout, and specialized RF pulses.


Assuntos
Isótopos de Carbono/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Isótopos de Carbono/análise , Simulação por Computador , Rim/química , Rim/metabolismo , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Ácido Pirúvico/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Magn Reson Med ; 72(5): 1302-10, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24272817

RESUMO

PURPOSE: Accurate measurement of the nonuniform transmit radiofrequency field is useful for many applications in magnetic resonance imaging, such as calibrating the scanner transmit system, evaluating coil performance, and improving image quality and quantitation. The radiofrequency field excitation amplitude (B(1)) is often obtained by acquiring a B(1) map. In this study, a new B(1) mapping method is proposed. THEORY AND METHODS: The use of two adiabatic full passage pulses with different magnitudes applied as successive refocusing pulses results in a linear relationship between phase and B(1) field strength that is insensitive to the repetition time, off-resonance effects, T(1), and T(2). Using this method, B(1) mapping can be localized to a slice or three-dimensional (3D) volume, with a spin-echo acquisition that is appropriate for fast projection measurements. RESULTS: This new method is shown to agree well with the Bloch-Siegert B(1) mapping method for both phantom and in vivo B(1) measurements at 1.5T, 3T, and 7T. The method's ability to acquire accurate projection B(1) measurements is also demonstrated. CONCLUSION: This method's high dynamic range, ability to make fast projection measurements, and linear quantitative relationship between phase and B1 make it an ideal candidate for use in robust transmitter gain calibration.


Assuntos
Mapeamento Encefálico/métodos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Simulação por Computador , Humanos , Imageamento Tridimensional , Imagens de Fantasmas , Sensibilidade e Especificidade , Razão Sinal-Ruído
15.
Magn Reson Med ; 71(1): 1-11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23412881

RESUMO

PURPOSE: Magnetic resonance spectroscopy of hyperpolarized substrates allows for the observation of label exchange catalyzed by enzymes providing a powerful tool to investigate tissue metabolism and potentially kinetics in vivo. However, the accuracy of current methods to calculate kinetic parameters has been limited by T1 relaxation effects, extracellular signal contributions, and reduced precision at lower signal-to-noise ratio. THEORY AND METHODS: To address these challenges, we investigated a new modeling technique using metabolic activity decomposition-stimulated echo acquisition mode. The metabolic activity decomposition-stimulated echo acquisition mode technique separates exchanging from nonexchanging metabolites providing twice the information as conventional techniques. RESULTS: This allowed for accurate measurements of rates of conversion and of multiple T1 values simultaneously using a single acquisition. CONCLUSION: The additional measurement of T1 values for the reaction metabolites provides further biological information about the cellular environment of the metabolites. The new technique was investigated through simulations and in vivo studies of transgenic mouse models of cancer demonstrating improved assessments of kinetic rate constants and new T1 relaxation value measurements for hyperpolarized (13) C-pyruvate, (13) C-lactate, and (13) C-alanine.


Assuntos
Alanina/química , Biomarcadores Tumorais/metabolismo , Ácido Láctico/metabolismo , Neoplasias Hepáticas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Modelos Biológicos , Ácido Pirúvico/metabolismo , Algoritmos , Animais , Isótopos de Carbono/farmacocinética , Simulação por Computador , Camundongos , Camundongos Transgênicos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Magn Reson Med ; 70(3): 829-35, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23041985

RESUMO

The Bloch-Siegert (B-S) B1+ mapping method has been shown to be fast and accurate, yet it suffers from high Specific Absorption Rate (SAR) and moderately long echo time. An adiabatic RF pulse design is introduced here for optimizing the off-resonant B-S RF pulse to achieve more B-S B1+ measurement sensitivity for a given pulse width. The extra sensitivity can be used for higher angle-to-noise ratio B1+ maps or traded off for faster scans. Using numerical simulations and phantom experiments, it is shown that a numerically optimized 2-ms adiabatic B-S pulse is 2.5 times more efficient than a conventional 6-ms Fermi-shaped B-S pulse. The adiabatic B-S pulse performance is validated in a phantom, and in vivo brain B1+ mapping at 3T and 7T are shown.


Assuntos
Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/anatomia & histologia , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imagens de Fantasmas
17.
Magn Reson Med ; 68(3): 857-62, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22144397

RESUMO

The Bloch-Siegert (B-S) method of B 1⁺ mapping has been shown to be fast and accurate, yet has high SAR and moderately long TE. These limitations can lengthen scan times and incur signal loss due to B(0) inhomogeneity, particularly at high field. The B-S method relies on applying a band-limited off-resonant B-S radiofrequency pulse to induce a B 1⁺-dependent frequency-shift for resonant spins. A method for optimizing the B-S radiofrequency pulse is presented here, which maximizes B-S B 1⁺ measurement sensitivity for a given SAR and T(2) . A 4-ms optimized pulse is shown to have 35% less SAR compared with the conventional 6-ms Fermi pulse while still improving B 1⁺ map angle-to-noise ratio by 22%. The optimized pulse performance is validated both in phantom and in vivo brain imaging at 7 T.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Humanos , Imagens de Fantasmas , Ondas de Rádio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Magn Reson Med ; 67(2): 353-62, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22135085

RESUMO

In parallel excitation, the computational speed of numerical radiofrequency (RF) pulse design methods is critical when subject dependencies and system nonidealities need to be incorporated on-the-fly. One important concern with optimization-based methods is high peak RF power exceeding hardware or safety limits. Hence, online controllability of the peak RF power is essential. Variable-rate selective excitation pulse reshaping is ideally suited to this problem due to its simplicity and low computational cost. In this work, we first improve the fidelity of variable-rate selective excitation implementation for discrete-time waveforms through waveform oversampling such that variable-rate selective excitation can be robustly applied to numerically designed RF pulses. Then, a variable-rate selective excitation-guided numerical RF pulse design is suggested as an online RF pulse design framework, aiming to simultaneously control peak RF power and compensate for off-resonance.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio , Humanos , Modelos Teóricos , Imagens de Fantasmas , Sensibilidade e Especificidade , Design de Software
19.
Magn Reson Med ; 68(6): 1876-85, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22457248

RESUMO

When evaluating the severity of valvular stenosis, the peak velocity of the blood flow is routinely used to estimate the transvalvular pressure gradient. One-dimensional Fourier velocity encoding effectively detects the peak velocity with an ungated time series of spatially resolved velocity spectra in real time. However, measurement accuracy can be degraded by the pulsatile and turbulent nature of stenotic flow and the existence of spatially varying off-resonance. In this work, we investigate the feasibility of improving the peak velocity detection capability of one-dimensional Fourier velocity encoding for stenotic flow using a novel echo-shifted interleaved readout combined with a variable-density circular k-space trajectory. The shorter echo and readout times of the echo-shifted interleaved acquisitions are designed to reduce sensitivity to off-resonance. Preliminary results from limited phantom and in vivo results also indicate that some artifacts from pulsatile flow appear to be suppressed when using this trajectory compared to conventional single-shot readouts, suggesting that peak velocity detection may be improved. The efficiency of the new trajectory improves the temporal and spatial resolutions. To realize the proposed readout, a novel multipoint-traversing algorithm is introduced for flexible and automated gradient-waveform design.


Assuntos
Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/fisiopatologia , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Algoritmos , Velocidade do Fluxo Sanguíneo , Análise de Fourier , Humanos , Fluxo Pulsátil , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Magn Reson Med ; 65(3): 610-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20939089

RESUMO

Hyperpolarized 13C MR spectroscopic imaging can detect not only the uptake of the pre-polarized molecule but also its metabolic products in vivo, thus providing a powerful new method to study cellular metabolism. Imaging the dynamic perfusion and conversion of these metabolites provides additional tissue information but requires methods for efficient hyperpolarization usage and rapid acquisitions. In this work, we have developed a time-resolved 3D MR spectroscopic imaging method for acquiring hyperpolarized 13C data by combining compressed sensing methods for acceleration and multiband excitation pulses to efficiently use the magnetization. This method achieved a 2 sec temporal resolution with full volumetric coverage of a mouse, and metabolites were observed for up to 60 sec following injection of hyperpolarized [1-(13)C]-pyruvate. The compressed sensing acquisition used random phase encode gradient blips to create a novel random undersampling pattern tailored to dynamic MR spectroscopic imaging with sampling incoherency in four (time, frequency, and two spatial) dimensions. The reconstruction was also tailored to dynamic MR spectroscopic imaging by applying a temporal wavelet sparsifying transform to exploit the inherent temporal sparsity. Customized multiband excitation pulses were designed with a lower flip angle for the [1-(13)C]-pyruvate substrate given its higher concentration than its metabolic products ([1-(13)C]-lactate and [1-(13)C]-alanine), thus using less hyperpolarization per excitation. This approach has enabled the monitoring of perfusion and uptake of the pyruvate, and the conversion dynamics to lactate and alanine throughout a volume with high spatial and temporal resolution.


Assuntos
Compressão de Dados/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ácido Pirúvico/farmacocinética , Algoritmos , Animais , Isótopos de Carbono/farmacocinética , Camundongos , Camundongos Transgênicos , Compostos Radiofarmacêuticos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA