Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Glob Chang Biol ; 29(17): 4939-4948, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37340689

RESUMO

How well populations can cope with global warming will often depend on the evolutionary potential and plasticity of their temperature-sensitive, fitness-relevant traits. In Bechstein's bats (Myotis bechsteinii), body size has increased over the last decades in response to warmer summers. If this trend continues it may threaten populations as larger females exhibit higher mortality. To assess the evolutionary potential of body size, we applied a Bayesian 'animal model' to estimate additive genetic variance, heritability and evolvability of body size, based on a 25-year pedigree of 332 wild females. Both heritability and additive genetic variance were reduced in hot summers compared to average and cold summers, while evolvability of body size was generally low. This suggests that the observed increase in body size was mostly driven by phenotypic plasticity. Thus, if warm summers continue to become more frequent, body size likely increases further and the resulting fitness loss could threaten populations.

2.
Oecologia ; 201(3): 853-861, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36773071

RESUMO

Animals often respond to climate change with changes in morphology, e.g., shrinking body size with increasing temperatures, as expected by Bergmann's rule. Because small body size can have fitness costs for individuals, this trend could threaten populations. Recent studies, however, show that morphological responses to climate change and the resulting fitness consequences cannot be generalized even among related species. In this long-term study, we investigate the interaction between ambient temperature, body size and survival probability in a large number of individually marked wild adult female Natterer's bats (Myotis nattereri). We compare populations from two geographical regions in Germany with a different climate. In a sliding window analysis, we found larger body sizes in adult females that were raised in warmer summers only in the northern population, but not in the southern population that experienced an overall warmer climate. With a capture-mark-recapture approach, we showed that larger individuals had higher survival rates, demonstrating that weather conditions in early life could have long-lasting fitness effects. The different responses in body size to warmer temperatures in the two regions highlight that fitness-relevant morphological responses to climate change have to be viewed on a regional scale and may affect local populations differently.


Assuntos
Quirópteros , Animais , Feminino , Temperatura , Mudança Climática , Alemanha , Estações do Ano , Tamanho Corporal
3.
Mol Ecol ; 31(2): 675-690, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704285

RESUMO

Emerging infectious diseases pose a major threat to human, animal, and plant health. The risk of species-extinctions increases when pathogens can survive in the absence of the host. Environmental reservoirs can facilitate this. However, identifying such reservoirs and modes of infection is often highly challenging. In this study, we investigated the presence and nature of an environmental reservoir for the ascomycete fungus Pseudogymnoascus destructans, the causative agent of White-Nose disease. Using 18 microsatellite markers, we determined the genotypic differentiation between 1497 P. destructans isolates collected from nine closely situated underground sites where bats hibernate (i.e., hibernacula) in Northeastern Germany. This approach was unique in that it ensured that every isolate and resulting multilocus genotype was not only present, but also viable and therefore theoretically capable of infecting a bat. The distinct distribution of multilocus genotypes across hibernacula demonstrates that each hibernaculum has an essentially unique fungal population. This would be expected if bats become infected in their hibernaculum (i.e., the site they spend winter in to hibernate) rather than in other sites visited before they start hibernating. In one hibernaculum, both the walls and the hibernating bats were sampled at regular intervals over five consecutive winter seasons (1062 isolates), revealing higher genotypic richness on walls compared to bats and a stable frequency of multilocus genotypes over multiple winters. This clearly implicates hibernacula walls as the main environmental reservoir of the pathogen, from which bats become reinfected annually during the autumn.


Assuntos
Ascomicetos , Quirópteros , Hibernação , Micoses , Doenças Nasais , Animais , Ascomicetos/genética , Genética Populacional , Humanos , Micoses/veterinária
4.
Proc Biol Sci ; 288(1952): 20210508, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34074120

RESUMO

Change in body size is one of the universal responses to global warming, with most species becoming smaller. While small size in most species corresponds to low individual fitness, small species typically show high population growth rates in cross-species comparisons. It is unclear, therefore, how climate-induced changes in body size ultimately affect population persistence. Unravelling the relationship between body size, ambient temperature and individual survival is especially important for the conservation of endangered long-lived mammals such as bats. Using an individual-based 24-year dataset from four free-ranging Bechstein's bat colonies (Myotis bechsteinii), we show for the first time a link between warmer summer temperatures, larger body sizes and increased mortality risk. Our data reveal a crucial time window in June-July, when juveniles grow to larger body sizes in warmer conditions. Body size is also affected by colony size, with larger colonies raising larger offspring. At the same time, larger bats have higher mortality risks throughout their lives. Our results highlight the importance of understanding the link between warmer weather and body size as a fitness-relevant trait for predicting species-specific extinction risks as consequences of global warming.


Assuntos
Quirópteros , Animais , Tamanho Corporal , Estudos Longitudinais , Estações do Ano , Tempo (Meteorologia)
5.
Mol Ecol ; 30(20): 5048-5063, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34402111

RESUMO

Within-species genetic diversity is crucial for the persistence and integrity of populations and ecosystems. Conservation actions require an understanding of factors influencing genetic diversity, especially in the context of global change. Both population size and connectivity are factors greatly influencing genetic diversity; the relative importance of these factors can, however, change through time. Hence, quantifying the degree to which population size or genetic connectivity are shaping genetic diversity, and at which ecological time scale (past or present), is challenging, yet essential for the development of efficient conservation strategies. In this study, we estimated the genetic diversity of 42 colonies of Rhinolophus hipposideros, a long-lived mammal vulnerable to global change, sampling locations spanning its continental northern range. Here, we present an integrative approach that disentangles and quantifies the contribution of different connectivity measures in addition to contemporary colony size and historic bottlenecks in shaping genetic diversity. In our study, the best model explained 64% of the variation in genetic diversity. It included historic bottlenecks, contemporary colony size, connectivity and a negative interaction between the latter two. Contemporary connectivity explained most genetic diversity when considering a 65 km radius around the focal colonies, emphasizing the large geographic scale at which the positive impact of connectivity on genetic diversity is most profound and hence, the minimum scale at which conservation should be planned. Our results highlight that the relative importance of the two main factors shaping genetic diversity varies through time, emphasizing the relevance of disentangling them to ensure appropriate conservation strategies.


Assuntos
Genética Populacional , Repetições de Microssatélites , Animais , Conservação dos Recursos Naturais , Ecossistema , Variação Genética , Mamíferos/genética , Densidade Demográfica
6.
Oecologia ; 192(4): 979-988, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32236689

RESUMO

Animals have evolved different cognitive processes to localize crucial resources that are difficult to find. Relevant cognitive processes such as associative learning and spatial memory have commonly been studied in a foraging related context under controlled laboratory conditions. However, in natural environments, animals can use multiple cognitive processes to localize resources. In this field study, we used a pairwise choice experiment and automatic roost monitoring to assess how individually marked, free-ranging Bechstein's bats belonging to two different colonies use associative learning, spatial memory and social information when localizing suitable day roosts. To our knowledge, this study tests for the first time how associative learning, spatial memory and social information are used in the process of roost localization in bats under the natural conditions. We show that, when searching for new roosts, bats used associative learning to discriminate between suitable and unsuitable roosts. For re-localizing previously occupied roosts, bats used spatial memory rather than associative learning. Moreover, bats significantly improved the localization of suitable unfamiliar roosts and tended to increase their accuracy to re-localize previously occupied day roosts using social information. Our field experiments suggest that Bechstein's bats make hierarchical use of different cognitive processes when localizing day roosts. More generally, our study underlines that evaluating different cues under natural conditions is fundamental to understanding how natural selection has shaped the cognitive processes used for localizing resources.


Assuntos
Quirópteros , Animais , Cognição , Sinais (Psicologia) , Meio Ambiente , Tempo
7.
BMC Evol Biol ; 17(1): 5, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056776

RESUMO

BACKGROUND: As bats have recently been described to harbor many different viruses, several studies have investigated the genetic co-variation between viruses and different bat species. However, little is known about the genetic co-variation of viruses and different populations of the same bat species, although such information is needed for an understanding of virus transmission dynamics within a given host species. We hypothesized that if virus transmission between host populations depends on events linked to gene flow in the bats, genetic co-variation should exist between host populations and astroviruses. RESULTS: We used 19 nuclear and one mitochondrial microsatellite loci to analyze the genetic population structure of the Natterer's bat (Myotis nattereri) within and among populations at different geographical scales in Germany. Further, we correlated the observed bat population structure to that of partial astrovirus sequences (323-394 nt fragments of the RNA-dependent RNA polymerase gene) obtained from the same bat populations. Our analyses revealed that the studied bat colonies can be grouped into three distinct genetic clusters, corresponding to the three geographic regions sampled. Furthermore, we observed an overall isolation-by-distance pattern, while no significant pattern was observed within a geographic region. Moreover, we found no correlation between the genetic distances among the bat populations and the astrovirus sequences they harbored. Even though high genetic similarity of some of the astrovirus haplotypes found in several different regions was detected, identical astrovirus haplotypes were not shared between different sampled regions. CONCLUSIONS: The genetic population structure of the bat host suggests that mating sites where several local breeding colonies meet act as stepping-stones for gene flow. Identical astrovirus haplotypes were not shared between different sampled regions suggesting that astroviruses are mostly transmitted among host colonies at the local scale. Nevertheless, high genetic similarity of some of the astrovirus haplotypes found in several different regions implies that occasional transmission across regions with subsequent mutations of the virus haplotypes does occur.


Assuntos
Astroviridae/genética , Quirópteros/genética , Quirópteros/virologia , Animais , Fluxo Gênico , Variação Genética , Genética Populacional , Alemanha , Haplótipos , Especificidade de Hospedeiro , Repetições de Microssatélites , Filogenia , RNA Polimerase Dependente de RNA/genética
8.
BMC Evol Biol ; 14: 18, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24479530

RESUMO

BACKGROUND: The population genetic structure of a parasite, and consequently its ability to adapt to a given host, is strongly linked to its own life history as well as the life history of its host. While the effects of parasite life history on their population genetic structure have received some attention, the effect of host social system has remained largely unstudied. In this study, we investigated the population genetic structure of two closely related parasitic mite species (Spinturnix myoti and Spinturnix bechsteini) with very similar life histories. Their respective hosts, the greater mouse-eared bat (Myotis myotis) and the Bechstein's bat (Myotis bechsteinii) have social systems that differ in several substantial features, such as group size, mating system and dispersal patterns. RESULTS: We found that the two mite species have strongly differing population genetic structures. In S. myoti we found high levels of genetic diversity and very little pairwise differentiation, whereas in S. bechsteini we observed much less diversity, strongly differentiated populations and strong temporal turnover. These differences are likely to be the result of the differences in genetic drift and dispersal opportunities afforded to the two parasites by the different social systems of their hosts. CONCLUSIONS: Our results suggest that host social system can strongly influence parasite population structure. As a result, the evolutionary potential of these two parasites with very similar life histories also differs, thereby affecting the risk and evolutionary pressure exerted by each parasite on its host.


Assuntos
Quirópteros/fisiologia , Quirópteros/parasitologia , Interações Hospedeiro-Parasita , Ácaros/genética , Animais , Evolução Biológica , Quirópteros/classificação , Estruturas Genéticas , Variação Genética , Camundongos , Ácaros/classificação , Ácaros/fisiologia , Reprodução , Comportamento Social
9.
Oecologia ; 173(1): 191-202, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23436020

RESUMO

Interspecific relationships such as mutualism and parasitism are major drivers of biodiversity. Because such interactions often comprise more than two species, ecological studies increasingly focus on complex multispecies systems. However, the spatial heterogeneity of multi-species interactions is often poorly understood. Here, we investigate the unusual interaction of a bat (Kerivoula hardwickii hardwickii) and two pitcher plant species (Nepenthes hemsleyana and N. bicalcarata) whose pitchers serve as roost for bats. Nepenthes hemsleyana offers roosts of higher quality, indicated by a more stable microclimate compared to N. bicalcarata but occurs at lower abundance and is less common than the latter. Whereas N. hemsleyana benefits from the roosting bats by gaining nitrogen from their feces, the bats' interaction with N. bicalcarata seems to be commensal or even parasitic. Bats stayed longer in roosts of higher quality provided by N. hemsleyana and preferred them to pitchers of N. bicalcarata in a disturbance experiment. Moreover, bats roosting only in pitchers of N. hemsleyana had a higher body condition and were less infested with parasites compared to bats roosting in pitchers of N. bicalcarata. Our study shows how the local supply of roosts with different qualities affects the behavior and status of their inhabitants and-as a consequence-how the demand of the inhabitants can influence evolutionary adaptations of the roost providing species.


Assuntos
Comportamento Animal , Quirópteros/fisiologia , Magnoliopsida/fisiologia , Simbiose , Adaptação Fisiológica , Animais , Tamanho Corporal , Peso Corporal , Quirópteros/anatomia & histologia , Quirópteros/parasitologia , Feminino , Masculino , Carga Parasitária
10.
Curr Biol ; 33(18): 3977-3984.e4, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37633280

RESUMO

Climate warming has major consequences for animal populations, as ambient temperature profoundly influences all organisms' physiology, behavior, or both.1 Body size in many organisms has been found to change with increased ambient temperatures due to influences on metabolism and/or access to resources.2,3,4,5,6 Changes in body size, in turn, can affect the dynamics and persistence of populations.7 Notably, in some species, body size has increased over the last decades in response to warmer temperatures.3,8 This has primarily been attributed to higher food availability,3 but might also result from metabolic savings in warmer environments.9,10 Bechstein's bats (Myotis bechsteinii) grow to larger body sizes in warmer summers,11 which affects their demography as larger females reproduce earlier at the expense of a shorter life expectancy.12,13 However, it remains unclear whether larger body sizes in warmer summers were due to thermoregulatory benefits or due to increased food availability. To disentangle these effects, we artificially heated communal day roosts of wild maternity colonies over four reproductive seasons. We used generalized mixed models to analyze these experimental results along with 25 years of long-term data comprising a total of 741 juveniles. We found that individuals raised in heated roosts grew significantly larger than those raised in unheated conditions. This suggests that metabolic savings in warmer conditions lead to increased body size, potentially resulting in the decoupling of body growth from prey availability. Our study highlights a direct mechanism by which climate change may alter fitness-relevant traits, with potentially dire consequences for population persistence.


Assuntos
Quirópteros , Animais , Feminino , Gravidez , Tamanho Corporal , Regulação da Temperatura Corporal , Quirópteros/fisiologia , Reprodução/fisiologia , Temperatura
11.
Behav Ecol Sociobiol ; 76(6): 75, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669868

RESUMO

Animal species differ considerably in longevity. Among mammals, short-lived species such as shrews have a maximum lifespan of about a year, whereas long-lived species such as whales can live for more than two centuries. Because of their slow pace of life, long-lived species are typically of high conservation concern and of special scientific interest. This applies not only to large mammals such as whales, but also to small-sized bats and mole-rats. To understand the typically complex social behavior of long-lived mammals and protect their threatened populations, field studies that cover substantial parts of a species' maximum lifespan are required. However, long-term field studies on mammals are an exception because the collection of individualized data requires considerable resources over long time periods in species where individuals can live for decades. Field studies that span decades do not fit well in the current career and funding regime in science. This is unfortunate, as the existing long-term studies on mammals yielded exciting insights into animal behavior and contributed data important for protecting their populations. Here, I present results of long-term field studies on the behavior, demography, and life history of bats, with a particular focus on my long-term studies on wild Bechstein's bats. I show that long-term studies on individually marked populations are invaluable to understand the social system of bats, investigate the causes and consequences of their extraordinary longevity, and assess their responses to changing environments with the aim to efficiently protect these unique mammals in the face of anthropogenic global change.

12.
J R Soc Interface ; 19(190): 20220170, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35506214

RESUMO

Communal roosting in Bechstein's bat colonies is characterized by the formation of several groups that use different day roosts and that regularly dissolve and re-merge (fission-fusion dynamics). Analysing data from two colonies of different sizes over many years, we find that (i) the number of days that bats stay in the same roost before changing follows an exponential distribution that is independent of the colony size and (ii) the number and size of groups that bats formed for roosting depend on the size of the colony, such that above a critical colony size two to six groups of different sizes are formed. To model these two observations, we propose an agent-based model in which agents make their decisions about roosts based on both random and social influences. For the latter, they copy the roost preference of another agent which models the transfer of the respective information. Our model is able to reproduce both the distribution of stay length in the same roost and the emergence of groups of different sizes dependent on the colony size. Moreover, we are able to predict the critical system size at which the formation of different groups emerges without global coordination. We further comment on dynamics that bridge the roosting decisions on short time scales (less than 1 day) with the social structures observed at long time scales (more than 1 year).


Assuntos
Quirópteros , Animais , Comportamento Social
13.
Commun Biol ; 5(1): 682, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810175

RESUMO

Whether species can cope with environmental change depends considerably on their life history. Bats have long lifespans and low reproductive rates which make them vulnerable to environmental changes. Global warming causes Bechstein's bats (Myotis bechsteinii) to produce larger females that face a higher mortality risk. Here, we test whether these larger females are able to offset their elevated mortality risk by adopting a faster life history. We analysed an individual-based 25-year dataset from 331 RFID-tagged wild bats and combine genetic pedigrees with data on survival, reproduction and body size. We find that size-dependent fecundity and age at first reproduction drive the observed increase in mortality. Because larger females have an earlier onset of reproduction and shorter generation times, lifetime reproductive success remains remarkably stable across individuals with different body sizes. Our study demonstrates a rapid shift to a faster pace of life in a mammal with a slow life history.


Assuntos
Quirópteros , Animais , Quirópteros/genética , Feminino , Aquecimento Global , Humanos , Longevidade , Reprodução
14.
R Soc Open Sci ; 9(2): 211881, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35223067

RESUMO

Bats are characterized by low reproductive rates in contrast with most of other small mammals. This makes their populations vulnerable when inclement environmental conditions such as cold and rainy weather impair the reproductive success of females. The fine-scale effect of weather on bats, however, remains largely unknown. Using a sliding window analysis approach on an 18-year individualized dataset on six Natterer's bat (Myotis nattereri) colonies, we investigated the effect of fine-scale weather conditions on age-specific reproductive success. We found that increased precipitation during a short time window in spring strongly reduced the probability of successful reproduction of first-year (FY) females. Our data suggest that this time window is concomitant with implantation or early pregnancy, before substantial investment into embryo development. In addition, larger FY had higher reproductive success, suggesting that reproduction may be condition dependent in young females. Reproductive success of older females was not affected by either weather or individual parameters. Our results show that changes in precipitation pattern may compromise the reproductive success of FY females. Further studies are needed to better understand the impact of weather conditions on reproductive success in long-lived bats under climate change scenarios.

15.
BMC Ecol Evol ; 22(1): 7, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090401

RESUMO

BACKGROUND: Hibernation allows species to conserve energy and thereby bridge unfavorable environmental conditions. At the same time, hibernation imposes substantial ecological and physiological costs. Understanding how hibernation timing differs within and between species can provide insights into the underlying drivers of this trade-off. However, this requires individualized long-term data that are often unavailable. Here, we used automatic monitoring techniques and a reproducible analysis pipeline to assess the individualized hibernation phenology of two sympatric bat species. Our study is based on data of more than 1100 RFID-tagged Daubenton's bats (Myotis daubentonii) and Natterer's bats (Myotis nattereri) collected over seven years at a hibernaculum in Germany. We used linear mixed models to analyze species-, sex- and age-specific differences in entrance, emergence and duration of the longest continuous period spent in the hibernaculum. RESULTS: Overall, Daubenton's bats entered the hibernaculum earlier and emerged later than Natterer's bats, resulting in a nearly twice as long hibernation duration. In both species, adult females entered earlier and emerged from hibernation later than adult males. Hibernation duration was shorter for juveniles than adults with the exception of adult male Natterer's bats whose hibernation duration was shortest of all classes. Finally, hibernation timing differed among years, but yearly variations in entrance and emergence timing were not equally shifted in both species. CONCLUSIONS: Our results suggest that even in sympatric species, and across sex and age classes, hibernation timing may be differentially affected by environmental conditions. This highlights the necessity of using individualized information when studying the impact of changing environments on hibernation phenology.


Assuntos
Quirópteros , Hibernação , Animais , Quirópteros/fisiologia , Demografia , Feminino , Alemanha , Hibernação/fisiologia , Masculino , Simpatria
16.
Curr Biol ; 18(17): R740-R742, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18786373

RESUMO

Most bat species breed communally, but how their colonies are founded is a mystery. A recent study suggests that the formation of a new colony starts with related females splitting off from an existing colony.


Assuntos
Comportamento Animal , Quirópteros/fisiologia , Comportamento Social , Animais , Quirópteros/genética , Feminino
17.
Proc Biol Sci ; 278(1719): 2761-7, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21307051

RESUMO

Elephants, dolphins, as well as some carnivores and primates maintain social links despite their frequent splitting and merging in groups of variable composition, a phenomenon known as fission-fusion. Information on the dynamics of social links and interactions among individuals is of high importance to the understanding of the evolution of animal sociality, including that of humans. However, detailed long-term data on such dynamics in wild mammals with fully known demography and kin structures are scarce. Applying a weighted network analysis on 20,500 individual roosting observations over 5 years, we show that in two wild Bechstein's bat colonies with high fission-fusion dynamics, individuals of different age, size, reproductive status and relatedness maintain long-term social relationships. In the larger colony, we detected two stable subunits, each comprising bats from several family lineages. Links between these subunits were mainly maintained by older bats and persisted over all years. Moreover, we show that the full details of the social structure become apparent only when large datasets are used. The stable multi-level social structures in Bechstein's bat colonies resemble that of elephants, dolphins and some primates. Our findings thus may shed new light on the link between social complexity and social cognition in mammals.


Assuntos
Comportamento Animal , Quirópteros/fisiologia , Dinâmica Populacional , Comportamento Social , Migração Animal , Animais , Quirópteros/genética , Feminino , Masculino , Comportamento de Nidação , Fatores de Tempo
18.
Biol Lett ; 7(3): 436-9, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21270023

RESUMO

Mutualistic relationships between vertebrates and plants apart from the pollen and seed-dispersal syndromes are rare. At first view, carnivorous pitcher plants of the genus Nepenthes seem to be highly unlikely candidates for mutualistic interactions with animals, as they form dimorphic terrestrial and aerial pitchers that trap arthropods and small vertebrates. Surprisingly, however, the aerial pitchers of Nepenthes rafflesiana variety elongata are poor insect traps, with low amounts of insect-attractive volatile compounds and low amounts of digestive fluid. Here, we show that N. rafflesiana elongata gains an estimated 33.8 per cent of the total foliar nitrogen from the faeces of Hardwicke's woolly bats (Kerivoula hardwickii hardwickii) that exclusively roost in its aerial pitchers. This is the first case in which the faeces-trapping syndrome has been documented in a pitcher plant that attracts bats and only the second case of a mutualistic association between a carnivorous plant and a mammal to date.


Assuntos
Comportamento Animal , Quirópteros/fisiologia , Nitrogênio/metabolismo , Sarraceniaceae/metabolismo , Simbiose , Animais , Fezes , Feminino , Masculino , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Sarraceniaceae/química
19.
Sci Rep ; 11(1): 2691, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514763

RESUMO

Leading-following behavior as a way of transferring information about the location of resources is wide-spread in many animal societies. It represents active information transfer that allows a given social species to reach collective decisions in the presence of limited information. Although leading-following behavior has received much scientific interest in the form of field studies, there is a need for systematic methods to quantify and study the individual contributions in this information transfer, which would eventually lead us to hypotheses about the individual mechanisms underlying this behaviour. In this paper we propose a general methodology that allows us to (a) infer individual leading-following behaviour from discrete observational data and (b) quantify individual influence based on methods from social network analysis. To demonstrate our methodology, we analyze longitudinal data of the roosting behavior of two different colonies of Bechstein's bats in different years. Regarding (a) we show how the inference of leading-following events can be calibrated from data making it a general approach when only discrete observations are available. This allows us to address (b) by constructing social networks in which nodes represent individual bats and directed and weighted links-the leading-following events. We then show how social network theory can be used to define and quantify individual influence in a way that reflects the dynamics of the specific social network. We find that individuals can be consistently ranked regarding their influence in the information transfer. Moreover, we identify a small set of individuals that play a central role in leading other bats to roosts. In the case of Bechstein's bats this finding can direct future studies on the individual-level mechanisms that result in such collective pattern. More generally, we posit that our data-driven methodology can be used to quantify leading-following behavior and individual impact in other animal systems, solely based on discrete observational data.


Assuntos
Comportamento Animal/fisiologia , Quirópteros/fisiologia , Comportamento Social , Animais
20.
Naturwissenschaften ; 97(4): 353-63, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20143039

RESUMO

Small endotherms must change roosting and thermoregulatory behaviour in response to changes in ambient conditions if they are to achieve positive energy balance. In social species, for example many bats, energy expenditure is influenced by environmental conditions, such as ambient temperature, and also by social thermoregulation. Direct measurements of daily fluctuations in metabolic rates in response to ambient and behavioural variables in the field have not been technologically feasible until recently. During different reproductive periods, we investigated the relationships between ambient temperature, group size and energy expenditure in wild maternity colonies of Bechstein's bats (Myotis bechsteinii). Bats used behavioural and physiological adjustments to regulate energy expenditure. Whether bats maintained normothermia or used torpor, the number of bats in the roosts as well changed with reproductive status and ambient temperature. During pregnancy and lactation, bats remained mostly normothermic and daily group sizes were relatively large, presumably to participate in the energetic benefits of social thermoregulation. In contrast, smaller groups were formed on days when bats used torpor, which occurred mostly during the post-lactation period. Thus, we were able to demonstrate on wild animals under natural conditions the significance of behavioural and physiological flexibility for optimal thermoregulatory behaviour in small endotherms.


Assuntos
Comportamento Animal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Quirópteros/fisiologia , Metabolismo Energético , Animais , Metabolismo Basal , Ritmo Circadiano , Comportamento Alimentar , Feminino , Lactação , Masculino , Gravidez , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA