Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 12(1): 379-87, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21359604

RESUMO

The secondary drying phase in freeze drying is mostly developed on a trial-and-error basis due to the lack of appropriate noninvasive process analyzers. This study describes for the first time the application of Tunable Diode Laser Absorption Spectroscopy, a spectroscopic and noninvasive sensor for monitoring secondary drying in laboratory-scale freeze drying with the overall purpose of targeting intermediate moisture contents in the product. Bovine serum albumin/sucrose mixtures were used as a model system to imitate high concentrated antibody formulations. First, the rate of water desorption during secondary drying at constant product temperatures (-22 °C, -10 °C, and 0 °C) was investigated for three different shelf temperatures. Residual moisture contents of sampled vials were determined by Karl Fischer titration. An equilibration step was implemented to ensure homogeneous distribution of moisture (within 1%) in all vials. The residual moisture revealed a linear relationship to the water desorption rate for different temperatures, allowing the evaluation of an anchor point from noninvasive flow rate measurements without removal of samples from the freeze dryer. The accuracy of mass flow integration from this anchor point was found to be about 0.5%. In a second step, the concept was successfully tested in a confirmation experiment. Here, good agreement was found for the initial moisture content (anchor point) and the subsequent monitoring and targeting of intermediate moisture contents. The present approach for monitoring secondary drying indicated great potential to find wider application in sterile operations on production scale in pharmaceutical freeze drying.


Assuntos
Liofilização , Preparações Farmacêuticas , Análise Espectral , Absorção , Animais , Bovinos , Dessecação , Liofilização/instrumentação , Liofilização/métodos , Soroalbumina Bovina , Análise Espectral/instrumentação , Análise Espectral/métodos , Sacarose/química , Tecnologia Farmacêutica , Temperatura , Água/análise
2.
J Pharm Sci ; 108(1): 416-430, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30114403

RESUMO

The aim of this research was to evaluate the impact of variability in ice sublimation rate (dm/dt) measurement and vial heat transfer coefficient (Kv) on product temperature prediction during the primary drying phase of lyophilization. The mathematical model used for primary drying uses dm/dt and Kv as inputs to predict product temperature. A second-generation tunable diode laser absorption spectroscopy (TDLAS)-based sensor was used to measure dm/dt. In addition, a new approach to calculate drying heterogeneity in a batch during primary drying is described. The TDLAS dm/dt measurements were found to be within 5%-10% of gravimetric measurement for laboratory- and pilot-scale lyophilizers. Intersupplier variability in Kv was high for the same "type" of vials, which can lead to erroneous product temperature prediction if "one value" of vial heat transfer coefficient is used for "all vial types" from different suppliers. Studies conducted in both a laboratory- and a pilot-scale lyophilizer showed TDLAS product temperature to be within ±1°C of average thermocouple temperature during primary drying. Using TDLAS data and calculations to estimate drying heterogeneity (number of vials undergoing primary drying), good agreement was obtained between theoretical and experimental results, demonstrating usefulness of the new approach.


Assuntos
Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Liofilização/métodos , Lasers Semicondutores , Modelos Teóricos , Análise Espectral/métodos , Temperatura
3.
J Pharm Sci ; 96(7): 1776-93, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17221854

RESUMO

The goal of this work was to demonstrate the use of Tunable Diode Laser Absorption Spectroscopy (TDLAS) as a noninvasive method to continuously measure the water vapor concentration and the vapor flow velocity in the spool connecting a freeze-dryer chamber and condenser. The instantaneous measurements were used to determine the water vapor mass flow rate (g/s). The mass flow determinations provided a continuous measurement of the total amount of water removed. Full load runs of pure water at different pressure and shelf temperature settings and a 5% (w/w) mannitol product run were performed in both laboratory and pilot scale freeze dryers. The ratio of "gravimetric/TDLAS" measurements of water removed was 1.02 +/- 0.06. A theoretical heat transfer model was used to predict the mass flow rate and the model results were compared to both the gravimetric and TDLAS data. Good agreement was also observed in the "gravimetric/TDLAS" ratio for the 5% mannitol runs dried in both freeze dryers. The endpoints of primary and secondary drying for the product runs were clearly identified. Comparison of the velocity and mass flux profiles between the laboratory and pilot dryers indicated a higher restriction to mass flow for the lab scale freeze dryer.


Assuntos
Liofilização , Lasers , Análise Espectral , Tecnologia Farmacêutica/métodos , Água/química , Absorção , Algoritmos , Manitol/química , Modelos Químicos , Movimento (Física) , Projetos Piloto , Pressão , Reprodutibilidade dos Testes , Tecnologia Farmacêutica/instrumentação , Temperatura , Fatores de Tempo , Volatilização
4.
J Pharm Sci ; 102(6): 1773-1785, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23681564

RESUMO

The objective of this study was to assess the feasibility of developing and applying a laboratory tool that can provide three-dimensional product structural information during freeze-drying and which can accurately characterize the collapse temperature (Tc ) of pharmaceutical formulations designed for freeze-drying. A single-vial freeze dryer coupled with optical coherence tomography freeze-drying microscopy (OCT-FDM) was developed to investigate the structure and Tc of formulations in pharmaceutically relevant products containers (i.e., freeze-drying in vials). OCT-FDM was used to measure the Tc and eutectic melt of three formulations in freeze-drying vials. The Tc as measured by OCT-FDM was found to be predictive of freeze-drying with a batch of vials in a conventional laboratory freeze dryer. The freeze-drying cycles developed using OCT-FDM data, as compared with traditional light transmission freeze-drying microscopy (LT-FDM), resulted in a significant reduction in primary drying time, which could result in a substantial reduction of manufacturing costs while maintaining product quality. OCT-FDM provides quantitative data to justify freeze-drying at temperatures higher than the Tc measured by LT-FDM and provides a reliable upper limit to setting a product temperature in primary drying.


Assuntos
Liofilização/métodos , Microscopia/métodos , Tomografia de Coerência Óptica/métodos , Temperatura de Transição , Animais , Bovinos , Desenho de Equipamento , Liofilização/instrumentação , Microscopia/instrumentação , Soroalbumina Bovina/química , Sacarose/química , Tomografia de Coerência Óptica/instrumentação
5.
Biomed Opt Express ; 3(1): 55-63, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22254168

RESUMO

A new type of freeze-drying microscope based upon time-domain optical coherence tomography is presented here (OCT-FDM). The microscope allows for real-time, in situ 3D imaging of pharmaceutical formulations in vials relevant for manufacturing processes with a lateral resolution of <7 µm and an axial resolution of <5 µm. Correlation of volumetric structural imaging with product temperature measured during the freeze-drying cycle allowed investigation of structural changes in the product and determination of the temperature at which the freeze-dried cake collapses. This critical temperature is the most important parameter in designing freeze-drying processes of pharmaceutical products.

6.
J Pharm Sci ; 98(9): 3406-18, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18781643

RESUMO

The goal of this work was to demonstrate the application of Tunable Diode Laser Absorption Spectroscopy (TDLAS) as a non-invasive method to determine the average product temperature of the batch during primary drying. The TDLAS sensor continuously measures the water vapor concentration and the vapor flow velocity in the spool connecting the freeze-dryer chamber and condenser. Vapor concentration and velocity data were then used to determine the average sublimation rate (g/s) which was subsequently integrated to evaluate the amount of water removed from the product. Position dependent vial heat transfer coefficients (K(v)) were evaluated using the TDLAS sensor data for 20 mL vials during sublimation tests with pure water. TDLAS K(v) data showed good agreement to K(v) data obtained by the traditional gravimetric procedure. K(v) for edge vials was found to be about 20-30% higher than that of center vials. A weighted K(v) was then used to predict a representative average product temperature from TDLAS data in partial and full load freeze drying runs with 5%, 7.5%, or 10% (w/w) sucrose, mannitol, and glycine solutions. TDLAS product temperatures for all freeze-drying runs were within 1-2 degrees C of "center vial" steady state thermocouple data.


Assuntos
Liofilização/métodos , Temperatura , Liofilização/instrumentação , Lasers Semicondutores , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA