Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(4): 047201, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335354

RESUMO

Partial transport barriers in the chaotic sea of Hamiltonian systems influence classical transport, as they allow for a small flux between chaotic phase-space regions only. We find for higher-dimensional systems that quantum transport through such a partial barrier is more restrictive than expected from two-dimensional maps. We establish a universal transition from quantum suppression to mimicking classical transport. The scaling parameter involves the flux, the size of a Planck cell, and the localization length due to dynamical localization along a resonance channel. This is numerically demonstrated for coupled kicked rotors with a partial barrier that generalizes a cantorus to higher dimensions.

2.
Phys Rev Lett ; 131(18): 187201, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977612

RESUMO

We demonstrate that quantum dynamical localization in the Arnold web of higher-dimensional Hamiltonian systems is destroyed by an intrinsic classical drift. Thus quantum wave packets and eigenstates may explore more of the intricate Arnold web than previously expected. Such a drift typically occurs, as resonance channels widen toward a large chaotic region or toward a junction with other resonance channels. If this drift is strong enough, we find that dynamical localization is destroyed. We establish that this drift-induced delocalization transition is universal and is described by a single transition parameter. Numerical verification is given using a time-periodically kicked Hamiltonian with a four-dimensional phase space.

3.
Chaos ; 33(1): 013125, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36725645

RESUMO

Chaotic transport in Hamiltonian systems is often restricted due to the presence of partial barriers, leading to a limited flux between different regions in phase space. Typically, the most restrictive partial barrier in a 2D symplectic map is based on a cantorus, the Cantor set remnants of a broken 1D torus. For a 4D symplectic map, we establish a partial barrier based on what we call a cantorus-NHIM-a normally hyperbolic invariant manifold with the structure of a cantorus. Using a flux formula, we determine the global 4D flux across a partial barrier based on a cantorus-NHIM by approximating it with high-order periodic NHIMs. In addition, we introduce a local 3D flux depending on the position along a resonance channel, which is relevant in the presence of slow Arnold diffusion. Moreover, for a partial barrier composed of stable and unstable manifolds of a NHIM, we utilize periodic NHIMs to quantify the corresponding flux.

4.
Phys Rev Lett ; 129(19): 193901, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399737

RESUMO

We conjecture that chaotic resonance modes in scattering systems are a product of a conditionally invariant measure from classical dynamics and universal exponentially distributed fluctuations. The multifractal structure of the first factor depends strongly on the lifetime of the mode and describes the average of modes with similar lifetime. The conjecture is supported for a dielectric cavity with chaotic ray dynamics at small wavelengths, in particular for experimentally relevant modes with longest lifetime. We explain scarring of the vast majority of modes along segments of rays based on multifractality and universal fluctuations, which is conceptually different from periodic-orbit scarring.

5.
Phys Rev Lett ; 121(7): 074101, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169099

RESUMO

A hypothesis about the average phase-space distribution of resonance eigenfunctions in chaotic systems with escape through an opening is proposed. Eigenfunctions with decay rate γ are described by a classical measure that (i) is conditionally invariant with classical decay rate γ and (ii) is uniformly distributed on sets with the same temporal distance to the quantum resolved chaotic saddle. This explains the localization of fast-decaying resonance eigenfunctions classically. It is found to occur in the phase-space region having the largest distance to the chaotic saddle. We discuss the dependence on the decay rate γ and the semiclassical limit. The hypothesis is numerically demonstrated for the standard map.

6.
Phys Rev Lett ; 119(14): 140602, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053292

RESUMO

We investigate theoretically a one-dimensional ideal Bose gas that is driven into a steady state far from equilibrium via the coupling to two heat baths: a global bath of temperature T and a "hot needle," a bath of temperature T_{h}≫T with localized coupling to the system. Remarkably, this system features a crossover to finite-size Bose condensation at temperatures T that are orders of magnitude larger than the equilibrium condensation temperature. This counterintuitive effect is explained by a suppression of long-wavelength excitations resulting from the competition between both baths. Moreover, for sufficiently large needle temperatures ground-state condensation is superseded by condensation into an excited state, which is favored by its weaker coupling to the hot needle. Our results suggest a general strategy for the preparation of quantum degenerate nonequilibrium steady states with unconventional properties and at large temperatures.

7.
Phys Rev Lett ; 116(5): 054101, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26894713

RESUMO

The statistical properties of interacting strongly chaotic systems are investigated for varying interaction strength. In order to model tunable entangling interactions between such systems, we introduce a new class of random matrix transition ensembles. The nearest-neighbor-spacing distribution shows a very sensitive transition from Poisson statistics to those of random matrix theory as the interaction increases. The transition is universal and depends on a single scaling parameter only. We derive the analytic relationship between the model parameters and those of a bipartite system, with explicit results for coupled kicked rotors, a dynamical systems paradigm for interacting chaotic systems. With this relationship the spectral fluctuations for both are in perfect agreement. An accurate approximation of the nearest-neighbor-spacing distribution as a function of the transition parameter is derived using perturbation theory.

8.
Chaos ; 26(6): 063124, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27368789

RESUMO

The regular structures of a generic 4d symplectic map with a mixed phase space are organized by one-parameter families of elliptic 1d-tori. Such families show prominent bends, gaps, and new branches. We explain these features in terms of bifurcations of the families when crossing a resonance. For these bifurcations, no external parameter has to be varied. Instead, the longitudinal frequency, which varies along the family, plays the role of the bifurcation parameter. As an example, we study two coupled standard maps by visualizing the elliptic and hyperbolic 1d-tori in a 3d phase-space slice, local 2d projections, and frequency space. The observed bifurcations are consistent with the analytical predictions previously obtained for quasi-periodically forced oscillators. Moreover, the new families emerging from such a bifurcation form the skeleton of the corresponding resonance channel.

9.
Phys Rev Lett ; 115(25): 254101, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722923

RESUMO

Chaotic eigenstates of quantum systems are known to localize on either side of a classical partial transport barrier if the flux connecting the two sides is quantum mechanically not resolved due to Heisenberg's uncertainty. Surprisingly, in open systems with escape chaotic resonance states can localize even if the flux is quantum mechanically resolved. We explain this using the concept of conditionally invariant measures from classical dynamical systems by introducing a new quantum mechanically relevant class of such fractal measures. We numerically find quantum-to-classical correspondence for localization transitions depending on the openness of the system and on the decay rate of resonance states.

10.
Phys Rev Lett ; 115(10): 104101, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26382678

RESUMO

We present the first experimental observation of resonance-assisted tunneling, a wave phenomenon, where regular-to-chaotic tunneling is strongly enhanced by the presence of a classical nonlinear resonance chain. For this we use a microwave cavity made of oxygen free copper with the shape of a desymmetrized cosine billiard designed with a large nonlinear resonance chain in the regular region. It is opened in a region, where only chaotic dynamics takes place, such that the tunneling rate of a regular mode to the chaotic region increases the line width of the mode. Resonance-assisted tunneling is demonstrated by (i) a parametric variation and (ii) the characteristic plateau and peak structure towards the semiclassical limit.


Assuntos
Modelos Teóricos , Teoria Quântica , Dinâmica não Linear
11.
Phys Rev Lett ; 111(24): 240405, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483633

RESUMO

Bose-Einstein condensation, the macroscopic occupation of a single quantum state, appears in equilibrium quantum statistical mechanics and persists also in the hydrodynamic regime close to equilibrium. Here we show that even when a degenerate Bose gas is driven into a steady state far from equilibrium, where the notion of a single-particle ground state becomes meaningless, Bose-Einstein condensation survives in a generalized form: the unambiguous selection of an odd number of states acquiring large occupations. Within mean-field theory we derive a criterion for when a single state and when multiple states are Bose selected in a noninteracting gas. We study the effect in several driven-dissipative model systems, and propose a quantum switch for heat conductivity based on shifting between one and three selected states.

12.
Phys Rev Lett ; 109(23): 234101, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368209

RESUMO

Generic 2D Hamiltonian systems possess partial barriers in their chaotic phase space that restrict classical transport. Quantum mechanically, the transport is suppressed if Planck's constant h is large compared to the classical flux, h>>Φ, such that wave packets and states are localized. In contrast, classical transport is mimicked for h<<Φ. Designing a quantum map with an isolated partial barrier of controllable flux Φ is the key to investigating the transition from this form of quantum localization to mimicking classical transport. It is observed that quantum transport follows a universal transition curve as a function of the expected scaling parameter Φ/h. We find this curve to be symmetric to Φ/h=1, having a width of 2 orders of magnitude in Φ/h, and exhibiting no quantized steps. We establish the relevance of local coupling, improving on previous random matrix models relying on global coupling. It turns out that a phenomenological 2×2 model gives an accurate analytical description of the transition curve.

13.
Phys Rev Lett ; 106(2): 024101, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21405229

RESUMO

For systems with a mixed phase space we demonstrate that dynamical tunneling universally leads to a fractional power law of the level-spacing distribution P(s) over a wide range of small spacings s. Going beyond Berry-Robnik statistics, we take into account that dynamical tunneling rates between the regular and the chaotic region vary over many orders of magnitude. This results in a prediction of P(s) which excellently describes the spectral data of the standard map. Moreover, we show that the power-law exponent is proportional to the effective Planck constant h(eff).

14.
Phys Rev E ; 103(4-1): 042204, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005999

RESUMO

We conjecture that in chaotic quantum systems with escape, the intensity statistics for resonance states universally follows an exponential distribution. This requires a scaling by the multifractal mean intensity, which depends on the system and the decay rate of the resonance state. We numerically support the conjecture by studying the phase-space Husimi function and the position representation of resonance states of the chaotic standard map, the baker map, and a random matrix model, each with partial escape.

15.
Phys Rev Lett ; 104(11): 114101, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20366479

RESUMO

We derive a prediction of dynamical tunneling rates from regular to chaotic phase-space regions combining the direct regular-to-chaotic tunneling mechanism in the quantum regime with an improved resonance-assisted tunneling theory in the semiclassical regime. We give a qualitative recipe for identifying the relevance of nonlinear resonances in a given variant Planck's over 2pi regime. For systems with one or multiple dominant resonances we find excellent agreement to numerics.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 1): 021117, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19792087

RESUMO

We introduce a switching mechanism in the asymptotic occupations of quantum states induced by the combined effects of a periodic driving and a weak coupling to a heat bath. It exploits one of the ubiquitous avoided crossings in driven systems and works even if both involved Floquet states have small occupations. It is independent of the initial state and the duration of the driving. As a specific example of this general switching mechanism we show how an asymmetric double well potential can be switched between the lower and upper well by a periodic driving that is much weaker than the asymmetry.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(5 Pt 1): 051129, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19518438

RESUMO

Although the statistical mechanics of periodically driven ("Floquet") systems in contact with a heat bath has some formal analogy with the traditional statistical mechanics of undriven systems, closer examination reveals radical differences. In Floquet systems all quasienergies epsilon_{j} can be placed in a finite frequency interval 0< or =epsilon_{j}

18.
Phys Rev E ; 100(4-1): 042219, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770964

RESUMO

The lifetimes of optical modes in whispering-gallery cavities depend crucially on the underlying classical ray dynamics, and they may be spoiled by the presence of classical nonlinear resonances due to resonance-assisted tunneling. Here we present an intuitive semiclassical picture that allows for an accurate prediction of decay rates of optical modes in systems with a mixed phase space. We also extend the perturbative description from near-integrable systems to systems with a mixed phase space, and we find equally good agreement. Both approaches are based on the approximation of the actual ray dynamics by an integrable Hamiltonian, which enables us to perform a semiclassical quantization of the system and to introduce a ray-based description of the decay of optical modes. The coupling between them is determined either perturbatively or semiclassically in terms of complex paths.

19.
Phys Rev E ; 100(5-1): 052205, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31869968

RESUMO

Physical systems are often neither completely closed nor completely open, but instead are best described by dynamical systems with partial escape or absorption. In this paper we introduce classical measures that explain the main properties of resonance eigenfunctions of chaotic quantum systems with partial escape. We construct a family of conditionally invariant measures with varying decay rates by interpolating between the natural measures of the forward and backward dynamics. Numerical simulations in a representative system show that our classical measures correctly describe the main features of the quantum eigenfunctions: their multifractal phase-space distribution, their product structure along stable and unstable directions, and their dependence on the decay rate. The (Jensen-Shannon) distance between classical and quantum measures goes to zero in the semiclassical limit for long- and short-lived eigenfunctions, while it remains finite for intermediate cases.

20.
Phys Rev E ; 99(4-1): 042213, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31108719

RESUMO

Nonlinear resonances in the classical phase space lead to a significant enhancement of tunneling. We demonstrate that the double resonance gives rise to a complicated tunneling peak structure. Such double resonances occur in Hamiltonian systems with an at least four-dimensional phase space. To explain the tunneling peak structure, we use the universal description of single and double resonances by the four-dimensional normal-form Hamiltonians. By applying perturbative methods, we reveal the underlying mechanism of enhancement and suppression of tunneling and obtain excellent quantitative agreement. Using a minimal matrix model, we obtain an intuitive understanding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA