Assuntos
Imunidade Adaptativa , Tolerância Imunológica , Imunidade Inata , Memória Imunológica , Imunidade Adaptativa/imunologia , Animais , Vacina BCG/imunologia , Diferenciação Celular , Humanos , Tolerância Imunológica/imunologia , Imunidade Inata/imunologia , Memória Imunológica/imunologia , VacinaçãoRESUMO
Despite the use of multidrug therapy, leprosy remains endemic in some countries. The association of several human leucocyte antigen (HLA) alleles and gene polymorphisms with leprosy has been demonstrated in many populations, but the major immune contributors associated to the spectrum of leprosy have not been defined yet. In this study, genotyping of HLA-A, -B, -DR, and -DQ alleles was performed in leprosy patients (n = 113) and control subjects (n = 117) from the region with the highest incidence for the disease in México. The odds of developing leprosy and lepromatous subtype were 2.12- and 2.74-fold higher in carriers of HLA-A*28, and 2.48- and 4.14-fold higher for leprosy and dimorphic subtype in carriers of DQB1*06. Interestingly, DQB1*07 was overrepresented in healthy individuals, compared to patients with leprosy (OR = 0.08) and the lepromatous subtype (OR = 0.06). These results suggest that HLA-A*28 is a marker for predisposition to leprosy and the lepromatous subtype and DQB1*06 to leprosy and the dimorphic subtype, while DQB1*07 might be a resistance marker in this Mestizo population.
Assuntos
Antígenos HLA/genética , Indígenas Norte-Americanos/genética , Hanseníase/genética , Adulto , Idoso , Alelos , Estudos de Casos e Controles , Feminino , Frequência do Gene , Estudos de Associação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Masculino , México , Pessoa de Meia-Idade , Polimorfismo GenéticoRESUMO
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the top infectious killers in the world. The only licensed vaccine against TB, Bacille Calmette-Guérin (BCG), provides variable protection against pulmonary TB, especially in adults. Hence, novel TB vaccine approaches are urgently needed. Both Th1 and Th17 responses are necessary for protection against TB, yet effective adjuvants and vaccine delivery systems for inducing robust Th1 and Th17 immunity are lacking. Herein we describe a synthetic Mincle agonist, UM-1098, and a silica nanoparticle delivery system that drives Th1/Th17 responses to Mtb antigens. Stimulation of human peripheral blood mononuclear cells (hPBMCs) with UM-1098 induced high levels of Th17 polarizing cytokines IL-6, IL-1ß, IL-23 as well as IL-12p70, IL-4 and TNF-α in vitro. PBMCs from both C57BL/6 and BALB/c mice responded with a similar cytokine pattern in vitro and in vivo. Importantly, intramuscular (I.M.) vaccination with UM-1098-adjuvanted TB antigen M72 resulted in significantly higher antigen-specific IFN-γ and IL-17A levels in C57BL/6 wt mice than Mincle KO mice. Vaccination of C57BL/6 wt mice with immunodominant Mtb antigens ESAT6/Ag85B or M72 resulted in predominantly Th1 and Th17 responses and induced antigen-specific serum antibodies. Notably, in a virulent Mtb challenge model, vaccination with UM-1098 adjuvanted ESAT6/Ag85B or M72 significantly reduced lung bacterial burden when compared with unvaccinated mice and protection occurred in the absence of pulmonary inflammation. These data demonstrate that the synthetic Mincle agonist UM-1098 induces strong Th1 and Th17 immunity after vaccination with Mtb antigens and provides protection against Mtb infection in mice.