Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cell ; 186(18): 3810-3825.e18, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37552983

RESUMO

A ubiquitous feature of eukaryotic transcriptional regulation is cooperative self-assembly between transcription factors (TFs) and DNA cis-regulatory motifs. It is thought that this strategy enables specific regulatory connections to be formed in gene networks between otherwise weakly interacting, low-specificity molecular components. Here, using synthetic gene circuits constructed in yeast, we find that high regulatory specificity can emerge from cooperative, multivalent interactions among artificial zinc-finger-based TFs. We show that circuits "wired" using the strategy of cooperative TF assembly are effectively insulated from aberrant misregulation of the host cell genome. As we demonstrate in experiments and mathematical models, this mechanism is sufficient to rescue circuit-driven fitness defects, resulting in genetic and functional stability of circuits in long-term continuous culture. Our naturally inspired approach offers a simple, generalizable means for building high-fidelity, evolutionarily robust gene circuits that can be scaled to a wide range of host organisms and applications.


Assuntos
Redes Reguladoras de Genes , Fatores de Transcrição , Fatores de Transcrição/genética , Saccharomyces cerevisiae/genética , Genoma
2.
Cell ; 185(8): 1431-1443.e16, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35427499

RESUMO

Synthetic biology has established powerful tools to precisely control cell function. Engineering these systems to meet clinical requirements has enormous medical implications. Here, we adopted a clinically driven design process to build receptors for the autonomous control of therapeutic cells. We examined the function of key domains involved in regulated intramembrane proteolysis and showed that systematic modular engineering can generate a class of receptors that we call synthetic intramembrane proteolysis receptors (SNIPRs) that have tunable sensing and transcriptional response abilities. We demonstrate the therapeutic potential of the receptor platform by engineering human primary T cells for multi-antigen recognition and production of dosed, bioactive payloads relevant to the treatment of disease. Our design framework enables the development of fully humanized and customizable transcriptional receptors for the programming of therapeutic cells suitable for clinical translation.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Receptores Artificiais , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores Artificiais/genética , Biologia Sintética , Linfócitos T
3.
Cell ; 184(9): 2281-2283, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33930295

RESUMO

In this issue of Cell, Nuñez et al. develop CRISPRoff, a programmable epigenetic memory writer capable of establishing specific gene silencing programs that are stably maintained across cell division and differentiation. The singular dCas9 fusion offers a simple, reliable, and general tool for genome-wide screens, multiplexed editing, and potential therapeutics.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Epigenômica , Regiões Promotoras Genéticas , Redação
4.
Cell ; 176(1-2): 227-238.e20, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30528434

RESUMO

Chemical modifications to DNA and histone proteins are involved in epigenetic programs underlying cellular differentiation and development. Regulatory networks involving molecular writers and readers of chromatin marks are thought to control these programs. Guided by this common principle, we established an orthogonal epigenetic regulatory system in mammalian cells using N6-methyladenine (m6A), a DNA modification not commonly found in metazoan epigenomes. Our system utilizes synthetic factors that write and read m6A and consequently recruit transcriptional regulators to control reporter loci. Inspired by models of chromatin spreading and epigenetic inheritance, we used our system and mathematical models to construct regulatory circuits that induce m6A-dependent transcriptional states, promote their spatial propagation, and maintain epigenetic memory of the states. These minimal circuits were able to program epigenetic functions de novo, conceptually validating "read-write" architectures. This work provides a toolkit for investigating models of epigenetic regulation and encoding additional layers of epigenetic information in cells.

5.
Cell ; 171(4): 966-979.e18, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056345

RESUMO

Protein aggregation is a hallmark of many diseases but also underlies a wide range of positive cellular functions. This phenomenon has been difficult to study because of a lack of quantitative and high-throughput cellular tools. Here, we develop a synthetic genetic tool to sense and control protein aggregation. We apply the technology to yeast prions, developing sensors to track their aggregation states and employing prion fusions to encode synthetic memories in yeast cells. Utilizing high-throughput screens, we identify prion-curing mutants and engineer "anti-prion drives" that reverse the non-Mendelian inheritance pattern of prions and eliminate them from yeast populations. We extend our technology to yeast RNA-binding proteins (RBPs) by tracking their propensity to aggregate, searching for co-occurring aggregates, and uncovering a group of coalescing RBPs through screens enabled by our platform. Our work establishes a quantitative, high-throughput, and generalizable technology to study and control diverse protein aggregation processes in cells.


Assuntos
Técnicas Genéticas , Príons/genética , Engenharia Genética , Técnicas Genéticas/economia , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Biologia Sintética/métodos , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
6.
Cell ; 158(1): 110-20, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995982

RESUMO

The transcription of genomic information in eukaryotes is regulated in large part by chromatin. How a diverse array of chromatin regulator (CR) proteins with different functions and genomic localization patterns coordinates chromatin activity to control transcription remains unclear. Here, we take a synthetic biology approach to decipher the complexity of chromatin regulation by studying emergent transcriptional behaviors from engineered combinatorial, spatial, and temporal patterns of individual CRs. We fuse 223 yeast CRs to programmable zinc finger proteins. Site-specific and combinatorial recruitment of CRs to distinct intralocus locations reveals a range of transcriptional logic and behaviors, including synergistic activation, long-range and spatial regulation, and gene expression memory. Comparing these transcriptional behaviors with annotated CR complex and function terms provides design principles for the engineering of transcriptional regulation. This work presents a bottom-up approach to investigating chromatin-mediated transcriptional regulation and introduces chromatin-based components and systems for synthetic biology and cellular engineering.


Assuntos
Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Genes Reporter , Proteínas de Saccharomyces cerevisiae/química , Transcrição Gênica
7.
Cell ; 150(3): 647-58, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863014

RESUMO

Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks.


Assuntos
Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Dedos de Zinco , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Biologia Sintética , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
Hum Mol Genet ; 32(20): 2966-2980, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37522762

RESUMO

Aggregation of TAR DNA-binding protein 43 kDa (TDP-43) is thought to drive the pathophysiology of amyotrophic lateral sclerosis and some frontotemporal dementias. TDP-43 is normally a nuclear protein that in neurons translocates to the cytoplasm and can form insoluble aggregates upon activation of the integrated stress response (ISR). Viruses evolved to control the ISR. In the case of Herpesvirus 8, the protein ORF57 acts to bind protein kinase R, inhibit phosphorylation of eIF2α and reduce activation of the ISR. We hypothesized that ORF57 might also possess the ability to inhibit aggregation of TDP-43. ORF57 was expressed in the neuronal SH-SY5Y line and its effects on TDP-43 aggregation characterized. We report that ORF57 inhibits TDP-43 aggregation by 55% and elicits a 2.45-fold increase in the rate of dispersion of existing TDP-43 granules. These changes were associated with a 50% decrease in cell death. Proteomic studies were carried out to identify the protein interaction network of ORF57. We observed that ORF57 directly binds to TDP-43 as well as interacts with many components of the ISR, including elements of the proteostasis machinery known to reduce TDP-43 aggregation. We propose that viral proteins designed to inhibit a chronic ISR can be engineered to remove aggregated proteins and dampen a chronic ISR.


Assuntos
Esclerose Lateral Amiotrófica , Herpesvirus Humano 8 , Neuroblastoma , Humanos , Herpesvirus Humano 8/metabolismo , Proteômica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Linhagem Celular , Esclerose Lateral Amiotrófica/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
9.
BMC Ophthalmol ; 24(1): 22, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229008

RESUMO

AIM: to assess the outcomes of a novel algorithm for the calculation of the amount levator muscle plication in congenital blepharoptosis surgery. METHODS: this retrospective comparative study included 34 patients with congenital ptosis subjected to levator muscle plication surgery during the period from October 2021 to November 2022. They were divided into two groups. Group A: the amount of levator muscle plication was calculated by a traditional formula [(amount of ptosis x 3) + 9 mm in cases with good levator function or (amount of ptosis x 3) + 11 mm in cases with fair levator function]. Group B: the amount of levator muscle plication was calculated by a novel nomogram [the result of the traditional formula was modified by subtracting 4 mm if the calculated amount was ≥ 15 mm or subtracting 3 mm if the calculated amount was < 15 mm]. Demographic data, baseline ptosis characteristics and postoperative results at 1st week, 1st month, 3rd month and 6th month were compared between the groups. Primary outcome measure was postoperative Marginal Reflex Distance (MRD1). Secondary outcome measures were lid contour, lid crease and any reported complications. RESULTS: Group A included 20 eyes of 18 patients while Group B included 20 eyes of 16 patients. The mean amount of levator muscle plication was 16.98 ± 2.44 mm and 13.48 ± 2.42 mm in group A and group B respectively. The difference between the two groups was highly statistically significant (p < 0.001). Mean MRD1 at the 1st postoperative week was 4.95 ± 0.37 mm in group A and 4.08 ± 0.64 mm in group B. This difference was highly statistically significant (P < 0.001). Overcorrection was seen in 8 (40%) eyes in group A and 1 (5%) eye in group B. The difference was statistically significant between the two groups (p = 0.008). Undercorrection was seen in only 1 (5%) eye in group B. No other complications were reported. Surgical success was achieved in 12 (60%) eyes in group A versus 18 (90%) eyes in group B. The difference between the two groups was statistically significant (p = 0.03). CONCLUSION: our novel nomogram for the calculation of the amount levator muscle plication in congenital blepharoptosis surgery is effective in achieving a satisfactory postoperative MRD1.


Assuntos
Blefaroplastia , Blefaroptose , Humanos , Blefaroptose/cirurgia , Blefaroptose/congênito , Pálpebras/cirurgia , Blefaroplastia/métodos , Estudos Retrospectivos , Músculos Oculomotores/cirurgia , Algoritmos , Resultado do Tratamento
10.
Angew Chem Int Ed Engl ; : e202408163, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880765

RESUMO

While protein aggregation is a hallmark of many neurodegenerative diseases, acquiring structural information on protein aggregates inside live cells remains challenging. Traditional microscopy does not provide structural information on protein systems. Routinely used fluorescent protein tags, such as Green Fluorescent Protein (GFP), might perturb native structures. Here, we report a counter-propagating mid-infrared photothermal imaging approach enabling mapping of secondary structure of protein aggregates in live cells modeling Huntington's disease. By comparing mid-infrared photothermal spectra of label-free and GFP-tagged huntingtin inclusions, we demonstrate that GFP fusions indeed perturb the secondary structure of aggregates. By implementing spectra with small spatial step for dissecting spectral features within sub-micrometer distances, we reveal that huntingtin inclusions partition into a ß-sheet-rich core and a ɑ-helix-rich shell. We further demonstrate that this structural partition exists only in cells with the [RNQ+] prion state, while [rnq-] cells only carry smaller ß-rich non-toxic aggregates. Collectively, our methodology has the potential to unveil detailed structural information on protein assemblies in live cells, enabling high-throughput structural screenings of macromolecular assemblies.

11.
Mol Syst Biol ; 18(11): e9933, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36377768

RESUMO

The gut microbiome is essential for processing complex food compounds and synthesizing nutrients that the host cannot digest or produce, respectively. New model systems are needed to study how the metabolic capacity provided by the gut microbiome impacts the nutritional status of the host, and to explore possibilities for altering host metabolic capacity via the microbiome. Here, we colonized the nematode Caenorhabditis elegans gut with cellulolytic bacteria that enabled C. elegans to utilize cellulose, an otherwise indigestible substrate, as a carbon source. Cellulolytic bacteria as a community component in the worm gut can also support additional bacterial species with specialized roles, which we demonstrate by using Lactobacillus plantarum to protect C. elegans against Salmonella enterica infection. This work shows that engineered microbiome communities can be used to endow host organisms with novel functions, such as the ability to utilize alternate nutrient sources or to better fight pathogenic bacteria.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Caenorhabditis elegans/microbiologia , Bactérias
12.
Nat Rev Genet ; 16(3): 159-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25668787

RESUMO

As synthetic biology approaches are extended to diverse applications throughout medicine, biotechnology and basic biological research, there is an increasing need to engineer yeast, plant and mammalian cells. Eukaryotic genomes are regulated by the diverse biochemical and biophysical states of chromatin, which brings distinct challenges, as well as opportunities, over applications in bacteria. Recent synthetic approaches, including 'epigenome editing', have allowed the direct and functional dissection of many aspects of physiological chromatin regulation. These studies lay the foundation for biomedical and biotechnological engineering applications that could take advantage of the unique combinatorial and spatiotemporal layers of chromatin regulation to create synthetic systems of unprecedented sophistication.


Assuntos
Cromatina/metabolismo , Epigênese Genética , Genoma , Histonas/metabolismo , RNA não Traduzido/metabolismo , Biologia Sintética , Animais , Engenharia Celular/métodos , Cromatina/química , Histonas/química , Humanos , Plantas/genética , Plantas/metabolismo , RNA não Traduzido/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biologia de Sistemas
13.
BMC Biol ; 18(1): 35, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216777

RESUMO

The traditional view of protein aggregation as being strictly disease-related has been challenged by many examples of cellular aggregates that regulate beneficial biological functions. When coupled with the emerging view that many regulatory proteins undergo phase separation to form dynamic cellular compartments, it has become clear that supramolecular assembly plays wide-ranging and critical roles in cellular regulation. This presents opportunities to develop new tools to probe and illuminate this biology, and to harness the unique properties of these self-assembling systems for synthetic biology for the purposeful manipulation of biological function.


Assuntos
Proteínas/química , Biologia Sintética
14.
Int J Syst Evol Microbiol ; 70(3): 1814-1821, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31951194

RESUMO

Solar panel surfaces, although subjected to a range of extreme environmental conditions, are inhabited by a diverse microbial community adapted to solar radiation, desiccation and temperature fluctuations. This is the first time a new bacterial species has been isolated from this environment. Strain R4DWNT belongs to the genus Sphingomonas and was isolated from a solar panel surface in Boston, MA, USA. Strain R4DWNT is a Gram-negative, non-motile and rod-shaped bacteria that tested positive for oxidase and catalase and forms round-shaped, shiny and orange-coloured colonies. It is mesophilic, neutrophilic and non-halophilic, and presents a more stenotrophic metabolism than its closest neighbours. The major fatty acids in this strain are C18:1ω7c/C18:1ω6c, C16:1ω7c/C16:1ω6c, C14:0 2OH and C16:0. Comparison of 16S rRNA gene sequences revealed that the closest type strains to R4DWNT are Sphingomonas fennica, Sphingomonas formosensis, Sphingomonas prati, Sphingomonas montana and Sphingomonas oleivorans with 96.3, 96.1, 96.0, 95.9 and 95.7 % pairwise similarity, respectively. The genomic G+C content of R4DWNT is 67.9 mol%. Based on these characteristics, strain R4DWNT represents a novel species of the genus Sphingomonas for which the name Sphingomonas solaris sp. nov. is proposed with the type strain R4DWNT (=CECT 9811T=LMG 31344T).


Assuntos
Filogenia , Energia Solar , Sphingomonas/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Boston , DNA Bacteriano/genética , Ácidos Graxos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingomonas/isolamento & purificação
15.
Proc Natl Acad Sci U S A ; 112(27): 8173-80, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100898

RESUMO

Bacteriostatic and bactericidal antibiotic treatments result in two fundamentally different phenotypic outcomes--the inhibition of bacterial growth or, alternatively, cell death. Most antibiotics inhibit processes that are major consumers of cellular energy output, suggesting that antibiotic treatment may have important downstream consequences on bacterial metabolism. We hypothesized that the specific metabolic effects of bacteriostatic and bactericidal antibiotics contribute to their overall efficacy. We leveraged the opposing phenotypes of bacteriostatic and bactericidal drugs in combination to investigate their activity. Growth inhibition from bacteriostatic antibiotics was associated with suppressed cellular respiration whereas cell death from most bactericidal antibiotics was associated with accelerated respiration. In combination, suppression of cellular respiration by the bacteriostatic antibiotic was the dominant effect, blocking bactericidal killing. Global metabolic profiling of bacteriostatic antibiotic treatment revealed that accumulation of metabolites involved in specific drug target activity was linked to the buildup of energy metabolites that feed the electron transport chain. Inhibition of cellular respiration by knockout of the cytochrome oxidases was sufficient to attenuate bactericidal lethality whereas acceleration of basal respiration by genetically uncoupling ATP synthesis from electron transport resulted in potentiation of the killing effect of bactericidal antibiotics. This work identifies a link between antibiotic-induced cellular respiration and bactericidal lethality and demonstrates that bactericidal activity can be arrested by attenuated respiration and potentiated by accelerated respiration. Our data collectively show that antibiotics perturb the metabolic state of bacteria and that the metabolic state of bacteria impacts antibiotic efficacy.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Antibacterianos/classificação , Bactérias/genética , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Interações Medicamentosas , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Testes de Sensibilidade Microbiana , Mutação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo
16.
Proc Natl Acad Sci U S A ; 111(20): E2100-9, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24803433

RESUMO

Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H2O2 sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H2O2. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality.


Assuntos
Antibacterianos/farmacologia , Catalase/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Oxirredução , Antioxidantes/química , Respiração Celular , Reparo do DNA , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes , Proteínas de Fluorescência Verde/metabolismo , Peróxido de Hidrogênio/química , Mutagênese , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Oxigênio/metabolismo , Plasmídeos/metabolismo , Espécies Reativas de Oxigênio
17.
Nat Rev Genet ; 11(5): 367-79, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20395970

RESUMO

Synthetic biology is bringing together engineers and biologists to design and build novel biomolecular components, networks and pathways, and to use these constructs to rewire and reprogram organisms. These re-engineered organisms will change our lives over the coming years, leading to cheaper drugs, 'green' means to fuel our cars and targeted therapies for attacking 'superbugs' and diseases, such as cancer. The de novo engineering of genetic circuits, biological modules and synthetic pathways is beginning to address these crucial problems and is being used in related practical applications.


Assuntos
Biotecnologia/tendências , Engenharia Genética , Animais , Materiais Biocompatíveis , Biocombustíveis , Técnicas Biossensoriais , Tratamento Farmacológico , Redes Reguladoras de Genes , Humanos , Tecnologia Farmacêutica
18.
Nat Methods ; 9(11): 1077-80, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23042452

RESUMO

We present a methodology for the design, construction and modification of synthetic gene networks. This method emphasizes post-assembly modification of constructs based on network behavior, thus facilitating iterative design strategies and rapid tuning and repurposing of gene networks. The ease of post-construction modification afforded by this approach and the ever-increasing repository of components within the framework will help accelerate the development of functional genetic circuits for synthetic biology.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Genes Sintéticos , Biologia Sintética , Escherichia coli/metabolismo
19.
Nat Chem Biol ; 8(5): 431-3, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22426114

RESUMO

Here we show that bacterial communication through indole signaling induces persistence, a phenomenon in which a subset of an isogenic bacterial population tolerates antibiotic treatment. We monitor indole-induced persister formation using microfluidics and identify the role of oxidative-stress and phage-shock pathways in this phenomenon. We propose a model in which indole signaling 'inoculates' a bacterial subpopulation against antibiotics by activating stress responses, leading to persister formation.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli/fisiologia , Indóis/metabolismo , Transdução de Sinais , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Microfluídica , Estresse Oxidativo , Proteínas Repressoras/metabolismo , Estresse Fisiológico
20.
bioRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37503217

RESUMO

A classical and well-established mechanism that enables cells to adapt to new and adverse conditions is the acquisition of beneficial genetic mutations. Much less is known about epigenetic mechanisms that allow cells to develop novel and adaptive phenotypes without altering their genetic blueprint. It has been recently proposed that histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), normally reserved to maintain genome integrity, can be redistributed across the genome to establish new and potentially adaptive phenotypes. To uncover the dynamics of this process, we developed a precision engineered genetic approach to trigger H3K9me redistribution on-demand in fission yeast. This enabled us to trace genome-scale RNA and chromatin changes over time prior to and during adaptation in long-term continuous cultures. Establishing adaptive H3K9me occurs over remarkably slow time-scales relative to the initiating stress. During this time, we captured dynamic H3K9me redistribution events ultimately leading to cells converging on an optimal adaptive solution. Upon removal of stress, cells relax to new transcriptional and chromatin states rather than revert to their initial (ground) state, establishing a tunable memory for a future adaptive epigenetic response. Collectively, our tools uncover the slow kinetics of epigenetic adaptation that allow cells to search for and heritably encode adaptive solutions, with implications for drug resistance and response to infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA